Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA.
Science. 2020 Feb 21;367(6480):912-917. doi: 10.1126/science.aay9959.
A myriad of cellular events are regulated by allostery; therefore, evolution of this process is of fundamental interest. Here, we use ancestral sequence reconstruction to resurrect ancestors of two colocalizing proteins, Aurora A kinase and its allosteric activator TPX2 (targeting protein for Xklp2), to experimentally characterize the evolutionary path of allosteric activation. Autophosphorylation of the activation loop is the most ancient activation mechanism; it is fully developed in the oldest kinase ancestor and has remained stable over 1 billion years of evolution. As the microtubule-associated protein TPX2 appeared, efficient kinase binding to TPX2 evolved, likely owing to increased fitness by virtue of colocalization. Subsequently, TPX2-mediated allosteric kinase regulation gradually evolved. Surprisingly, evolution of this regulation is encoded in the kinase and did not arise by a dominating mechanism of coevolution.
大量的细胞事件受变构调节;因此,这个过程的进化具有根本的意义。在这里,我们使用祖先序列重建来复活两个共定位蛋白(Aurora A 激酶及其变构激活剂 TPX2(Xklp2 的靶向蛋白)的祖先,以实验表征变构激活的进化途径。激活环的自磷酸化是最古老的激活机制;它在最古老的激酶祖先进化中得到了充分的发展,并且在 10 亿年的进化过程中保持稳定。随着微管相关蛋白 TPX2 的出现,激酶与 TPX2 的有效结合得到了进化,这可能是由于共定位增加了适应性。随后,TPX2 介导的激酶变构调节逐渐进化。令人惊讶的是,这种调节的进化被编码在激酶中,而不是通过共进化的主导机制产生的。