Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore.
J Chem Phys. 2023 Feb 28;158(8):080901. doi: 10.1063/5.0140002.
This Perspective presents an overview of the development of the hierarchy of Davydov's Ansätze and a few of their applications in many-body problems in computational chemical physics. Davydov's solitons originated in the investigation of vibrational energy transport in proteins in the 1970s. Momentum-space projection of these solitary waves turned up to be accurate variational ground-state wave functions for the extended Holstein molecular crystal model, lending unambiguous evidence to the absence of formal quantum phase transitions in Holstein systems. The multiple Davydov Ansätze have been proposed, with increasing Ansatz multiplicity, as incremental improvements of their single-Ansatz parents. For a given Hamiltonian, the time-dependent variational formalism is utilized to extract accurate dynamic and spectroscopic properties using Davydov's Ansätze as its trial states. A quantity proven to disappear for large multiplicities, the Ansatz relative deviation is introduced to quantify how closely the Schrödinger equation is obeyed. Three finite-temperature extensions to the time-dependent variation scheme are elaborated, i.e., the Monte Carlo importance sampling, the method of thermofield dynamics, and the method of displaced number states. To demonstrate the versatility of the methodology, this Perspective provides applications of Davydov's Ansätze to the generalized Holstein Hamiltonian, variants of the spin-boson model, and systems of cavity-assisted singlet fission, where accurate dynamic and spectroscopic properties of the many-body systems are given by the Davydov trial states.
本文概述了 Davydov 方法的等级结构的发展,以及它们在计算化学物理中许多体问题中的一些应用。Davydov 孤子起源于 20 世纪 70 年代对蛋白质中振动能量输运的研究。这些孤子波在动量空间的投影被证明是扩展 Holstein 分子晶体模型的精确变分基态波函数,为 Holstein 体系中不存在正式量子相变提供了明确的证据。随着 Ansatz 多重性的增加,提出了多种 Davydov Ansätze,作为其单 Ansatz 亲本的增量改进。对于给定的哈密顿量,利用含时变分理论,利用 Davydov 方法作为其试探态,提取准确的动力学和光谱性质。引入 Ansatz 相对偏差来量化薛定谔方程的遵守程度,该量被证明在大多重性下消失。阐述了三种有限温度扩展的含时变分方案,即蒙特卡罗重要抽样法、热场动力学方法和位移数态方法。为了展示该方法的多功能性,本文提供了 Davydov 方法在广义 Holstein 哈密顿量、自旋-玻色子模型变体和腔辅助单重态裂变系统中的应用,其中多体系统的准确动力学和光谱性质由 Davydov 试探态给出。