Suppr超能文献

深度变分蒙特卡罗中向固定节点极限的收敛

Convergence to the fixed-node limit in deep variational Monte Carlo.

作者信息

Schätzle Z, Hermann J, Noé F

机构信息

FU Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany.

出版信息

J Chem Phys. 2021 Mar 28;154(12):124108. doi: 10.1063/5.0032836.

Abstract

Variational quantum Monte Carlo (QMC) is an ab initio method for solving the electronic Schrödinger equation that is exact in principle, but limited by the flexibility of the available Ansätze in practice. The recently introduced deep QMC approach, specifically two deep-neural-network Ansätze PauliNet and FermiNet, allows variational QMC to reach the accuracy of diffusion QMC, but little is understood about the convergence behavior of such Ansätze. Here, we analyze how deep variational QMC approaches the fixed-node limit with increasing network size. First, we demonstrate that a deep neural network can overcome the limitations of a small basis set and reach the mean-field (MF) complete-basis-set limit. Moving to electron correlation, we then perform an extensive hyperparameter scan of a deep Jastrow factor for LiH and H and find that variational energies at the fixed-node limit can be obtained with a sufficiently large network. Finally, we benchmark MF and many-body Ansätze on HO, increasing the fraction of recovered fixed-node correlation energy of single-determinant Slater-Jastrow-type Ansätze by half an order of magnitude compared to previous variational QMC results, and demonstrate that a single-determinant Slater-Jastrow-backflow version of the Ansatz overcomes the fixed-node limitations. This analysis helps understand the superb accuracy of deep variational Ansätze in comparison to the traditional trial wavefunctions at the respective level of theory and will guide future improvements of the neural-network architectures in deep QMC.

摘要

变分量子蒙特卡罗(QMC)是一种用于求解电子薛定谔方程的从头算方法,该方法在原则上是精确的,但在实际应用中受到可用近似函数灵活性的限制。最近引入的深度QMC方法,特别是两种深度神经网络近似函数PauliNet和FermiNet,使变分QMC能够达到扩散QMC的精度,但对于此类近似函数的收敛行为了解甚少。在这里,我们分析深度变分QMC如何随着网络规模的增加而接近固定节点极限。首先,我们证明深度神经网络可以克服小基组的局限性并达到平均场(MF)完全基组极限。在考虑电子相关性时,我们随后对LiH和H的深度Jastrow因子进行了广泛的超参数扫描,发现使用足够大的网络可以获得固定节点极限下的变分能量。最后,我们在HO上对MF和多体近似函数进行了基准测试,与之前的变分QMC结果相比,单行列式Slater-Jastrow型近似函数恢复的固定节点相关能量分数提高了半个数量级,并证明该近似函数的单行列式Slater-Jastrow-回流版本克服了固定节点的局限性。该分析有助于理解在各自理论水平上深度变分近似函数相对于传统试探波函数的超高精度,并将指导深度QMC中神经网络架构的未来改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验