PhyLife, Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Chaos. 2023 Feb;33(2):023102. doi: 10.1063/5.0129095.
A previously overlooked version of the so-called Olsen model of the peroxidase-oxidase reaction has been studied numerically using 2D isospike stability and maximum Lyapunov exponent diagrams and reveals a rich variety of dynamic behaviors not observed before. The model has a complex bifurcation structure involving mixed-mode and bursting oscillations as well as quasiperiodic and chaotic dynamics. In addition, multiple periodic and non-periodic attractors coexist for the same parameters. For some parameter values, the model also reveals formation of mosaic patterns of complex dynamic states. The complex dynamic behaviors exhibited by this model are compared to those of another version of the same model, which has been studied in more detail. The two models show similarities, but also notable differences between them, e.g., the organization of mixed-mode oscillations in parameter space and the relative abundance of quasiperiodic and chaotic oscillations. In both models, domains with chaotic dynamics contain apparently disorganized subdomains of periodic attractors with dinoflagellate-like structures, while the domains with mainly quasiperiodic behavior contain subdomains with periodic attractors organized as regular filamentous structures. These periodic attractors seem to be organized according to Stern-Brocot arithmetics. Finally, it appears that toroidal (quasiperiodic) attractors develop into first wrinkled and then fractal tori before they break down to chaotic attractors.
先前被忽视的过氧化物酶-氧化酶反应的所谓 Olsen 模型的一个版本已经使用二维等尖峰稳定性和最大 Lyapunov 指数图进行了数值研究,揭示了以前未观察到的丰富多样的动态行为。该模型具有复杂的分岔结构,涉及混合模式和爆发式振荡以及准周期和混沌动力学。此外,相同参数下存在多个周期性和非周期性吸引子。对于某些参数值,该模型还揭示了复杂动态状态的镶嵌模式的形成。该模型表现出的复杂动态行为与同一模型的另一个版本进行了比较,该版本已经进行了更详细的研究。两个模型表现出相似之处,但也存在明显的差异,例如,混合模式振荡在参数空间中的组织以及准周期和混沌振荡的相对丰度。在这两个模型中,混沌动力学域包含明显无组织的周期性吸引子的亚域,具有腰鞭毛虫样结构,而主要是准周期行为的域包含周期性吸引子组织成规则丝状结构的亚域。这些周期性吸引子似乎是根据 Stern-Brocot 算术组织的。最后,似乎是环形(准周期)吸引子在分解为混沌吸引子之前先发展成褶皱状,然后再发展成分形环。