Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK.
MRC Nutrition and Bone Health Research Group, Clifford Allbutt Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 OAH, UK.
Calcif Tissue Int. 2023 May;112(5):573-583. doi: 10.1007/s00223-023-01071-6. Epub 2023 Mar 2.
Between-scanner differences in measures of bone and body composition can obscure or exaggerate physiological differences in multi-site studies or the magnitude of changes in longitudinal studies. We conducted a cross-calibration study at two bone imaging centres in The Gambia, West Africa where DXA (dual-energy X-ray absorptiometry) and pQCT (peripheral Quantitative-Computed Tomography) are routinely used. Repeat scans were obtained from 64 Gambian adults (58% Male) aged Mean(SD) 30.9 (13.5) years with Mean(SD) body mass index (BMI) 21.7 (4.0) kg/m, using DXA (GE Lunar iDXA, whole body [WB], total hip [TH], lumbar spine [LS]) and pQCT (Stratec XCT2000L/XCT2000, tibia 4%, 50% sites). Between-scanner differences were tested using paired t tests (p < 0.05). Between-scanner correlation was explored with linear regression, and cross-calibration equations derived. Bland-Altman analysis investigated machine trend/bias. When differences were detected (p < 0.05), cross-calibration equations were applied to urban values, with t tests and Bland Altman analysis repeated. Between-scanner differences exceeded the predefined level of statistical significance (p < 0.05) for WB aBMD and BA; all pQCT measures vBMD, BMC, cortical cross-sectional area (CSA) and stress-strain index (SSI). Between-scanner correlation was high (R:0.92-0.99), except pQCT Mu.Den (R = 0.51). Bland Altman plots indicated bias increased with increasing BMD. Cross-calibration equations attenuated all between-scanner differences and systematic bias. Cross-calibration, particularly of pQCT scanners, is an important consideration in multi-site studies particularly where between population comparisons are intended. Our experiences and findings may be generalisable to other resource-limited settings where the logistics of sourcing parts and in-country repair may result in lengthy scanner downtime.
在多站点研究中,骨骼和身体成分测量值的扫描仪间差异可能会掩盖或夸大生理差异,或者在纵向研究中,变化幅度也可能会被夸大。我们在西非冈比亚的两个骨成像中心进行了一项交叉校准研究,那里常规使用双能 X 射线吸收法(DXA)和外周定量计算机断层扫描(pQCT)。对 64 名冈比亚成年人(58%为男性)进行了重复扫描,他们的年龄平均(标准差)为 30.9(13.5)岁,平均(标准差)体重指数(BMI)为 21.7(4.0)kg/m2,使用 DXA(GE Lunar iDXA,全身[WB]、全髋[TH]、腰椎[LS])和 pQCT(Stratec XCT2000L/XCT2000,胫骨 4%、50%部位)进行扫描。使用配对 t 检验(p<0.05)来检验扫描仪间的差异。通过线性回归探索扫描仪间的相关性,并得出交叉校准方程。Bland-Altman 分析研究了机器的趋势/偏差。当检测到差异(p<0.05)时,应用交叉校准方程将城市值转换,然后重复 t 检验和 Bland Altman 分析。WB aBMD 和 BA 的全扫描仪差异超过了预定的统计学显著性水平(p<0.05);所有 pQCT 测量值 vBMD、BMC、皮质横截面积(CSA)和应力度-应变指数(SSI)均如此。除了 pQCT Mu.Den(R=0.51)之外,扫描仪间的相关性很高(R:0.92-0.99)。Bland-Altman 图表明,偏差随 BMD 的增加而增加。交叉校准方程减弱了所有扫描仪间的差异和系统偏差。在多站点研究中,特别是在打算进行人群间比较的情况下,交叉校准,特别是 pQCT 扫描仪的交叉校准,是一个重要的考虑因素。我们的经验和发现可能适用于其他资源有限的环境,在这些环境中,由于获取部件和国内维修的后勤工作可能导致扫描仪长时间停机。