Suppr超能文献

瘦体重的纵向变化可预测6至7岁时胫骨几何形态和矿化的外周定量CT测量结果。

Longitudinal changes in lean mass predict pQCT measures of tibial geometry and mineralisation at 6-7 years.

作者信息

Moon Rebecca J, Cole Zoe A, Crozier Sarah R, Curtis Elizabeth M, Davies Justin H, Gregson Celia L, Robinson Sian M, Dennison Elaine M, Godfrey Keith M, Inskip Hazel M, Cooper Cyrus, Harvey Nicholas C

机构信息

MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.

MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Rheumatology, Salisbury Hospital NHS Foundation Trust, Salisbury, UK.

出版信息

Bone. 2015 Jun;75:105-10. doi: 10.1016/j.bone.2015.02.015. Epub 2015 Feb 20.

Abstract

BACKGROUND

Studies in childhood suggest that both body composition and early postnatal growth are associated with bone mineral density (BMD). However, little is known of the relationships between longitudinal changes in fat (FM) and lean mass (LM) and bone development in pre-pubertal children. We therefore investigated these associations in a population-based mother-offspring cohort, the Southampton Women's Survey.

METHODS

Total FM and LM were assessed at birth and 6-7 years of age by dual-energy x-ray absorptiometry (DXA). At 6-7 years, total cross-sectional area (CSA) and trabecular volumetric BMD (vBMD) at the 4% site (metaphysis) of the tibia was assessed using peripheral quantitative computed tomography [pQCT (Stratec XCT-2000)]. Total CSA, cortical CSA, cortical vBMD and strength-strain index (SSI) were measured at the 38% site (diaphysis). FM, LM and bone parameters were adjusted for age and sex and standardised to create within-cohort z-scores. Change in LM (ΔLM) or FM (ΔFM) was represented by change in z-score from birth to 7 years old and conditioned on the birth measurement. Linear regression was used to explore the associations between ΔLM or ΔFM and standardised pQCT outcomes, before and after mutual adjustment and for linear growth. The β-coefficient represents SD change in outcome per unit SD change in predictor.

RESULTS

DXA at birth, in addition to both DXA and pQCT scans at 6-7 years, were available for 200 children (48.5% male). ΔLM adjusted for ΔFM was positively associated with tibial total CSA at both the 4% (β=0.57SD/SD, p<0.001) and 38% sites (β=0.53SD/SD, p<0.001), cortical CSA (β=0.48SD/SD, p<0.001) and trabecular vBMD (β=0.30SD/SD, p<0.001), but not with cortical vBMD. These relationships persisted after adjustment for linear growth. In contrast, ΔFM adjusted for ΔLM was only associated with 38% total and cortical CSA, which became non-significant after adjustment for linear growth.

CONCLUSION

In this study, gain in childhood LM was positively associated with bone size and trabecular vBMD at 6-7 years of age. In contrast, no relationships between change in FM and bone were observed, suggesting that muscle growth, rather than accrual of fat mass, may be a more important determinant of childhood bone development.

摘要

背景

儿童期研究表明,身体组成和出生后早期生长均与骨矿物质密度(BMD)相关。然而,青春期前儿童脂肪量(FM)和瘦体重(LM)的纵向变化与骨骼发育之间的关系却鲜为人知。因此,我们在一项基于人群的母婴队列研究——南安普敦妇女调查中,对这些关联进行了调查。

方法

通过双能X线吸收法(DXA)在出生时和6至7岁时评估总FM和LM。在6至7岁时,使用外周定量计算机断层扫描[pQCT(Stratec XCT - 2000)]评估胫骨4%部位(干骺端)的总横截面积(CSA)和小梁体积骨密度(vBMD)。在38%部位(骨干)测量总CSA、皮质CSA、皮质vBMD和强度应变指数(SSI)。对FM、LM和骨参数进行年龄和性别校正,并进行标准化以创建队列内z评分。LM(ΔLM)或FM(ΔFM)的变化用从出生到7岁的z评分变化表示,并以出生时的测量值为条件。使用线性回归来探讨ΔLM或ΔFM与标准化pQCT结果之间的关联,包括相互调整前后以及线性生长情况。β系数表示预测变量每单位标准差变化时结果的标准差变化。

结果

200名儿童(48.5%为男性)有出生时的DXA数据,以及6至7岁时的DXA和pQCT扫描数据。校正ΔFM后的ΔLM与胫骨4%部位(β = 0.57SD/SD,p < 0.001)和38%部位的总CSA(β = 0.53SD/SD,p < 0.001)、皮质CSA(β = 0.48SD/SD,p < 0.001)和小梁vBMD(β = 0.30SD/SD,p < 0.001)呈正相关,但与皮质vBMD无关。在调整线性生长后,这些关系仍然存在。相比之下,校正ΔLM后的ΔFM仅与38%部位的总CSA和皮质CSA相关,在调整线性生长后变得不显著。

结论

在本研究中,儿童期LM的增加与6至7岁时的骨骼大小和小梁vBMD呈正相关。相比之下,未观察到FM变化与骨骼之间的关系,这表明肌肉生长而非脂肪量的增加可能是儿童期骨骼发育更重要的决定因素。

相似文献

1
Longitudinal changes in lean mass predict pQCT measures of tibial geometry and mineralisation at 6-7 years.
Bone. 2015 Jun;75:105-10. doi: 10.1016/j.bone.2015.02.015. Epub 2015 Feb 20.
4
Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children.
J Clin Endocrinol Metab. 2011 Jan;96(1):106-14. doi: 10.1210/jc.2010-0889. Epub 2010 Oct 6.
5
Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
Bone. 2005 Jun;36(6):1012-8. doi: 10.1016/j.bone.2005.03.001.
6
Cystic fibrosis-related bone disease in children: Examination of peripheral quantitative computed tomography (pQCT) data.
J Cyst Fibros. 2015 Sep;14(5):668-77. doi: 10.1016/j.jcf.2015.04.005. Epub 2015 May 6.
7
Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis.
Bone. 2016 Sep;90:7-14. doi: 10.1016/j.bone.2016.04.030. Epub 2016 Apr 29.
9
A multi-imaging modality study of bone density, bone structure and the muscle - bone unit in end-stage renal disease.
Bone. 2019 Oct;127:271-279. doi: 10.1016/j.bone.2019.05.022. Epub 2019 May 31.

引用本文的文献

1
Risk of wrist fracture, estimated by the load-to-strength ratio, declines following sleeve gastrectomy in adolescents and young adults.
Osteoporos Int. 2024 Feb;35(2):285-291. doi: 10.1007/s00198-023-06941-1. Epub 2023 Oct 21.
3
The Impact of Diet and Physical Activity on Bone Health in Children and Adolescents.
Front Endocrinol (Lausanne). 2021 Sep 13;12:704647. doi: 10.3389/fendo.2021.704647. eCollection 2021.
4
A systematic review and meta-analysis of pediatric normative peripheral quantitative computed tomography data.
Bone Rep. 2021 Jul 7;15:101103. doi: 10.1016/j.bonr.2021.101103. eCollection 2021 Dec.
5
Association Between Physical Fitness and Bone Strength and Structure in 3- to 5-Year-Old Children.
Sports Health. 2020 Sep/Oct;12(5):431-440. doi: 10.1177/1941738120913645. Epub 2020 May 22.
6
Estimating body mass and composition from proximal femur dimensions using dual energy x-ray absorptiometry.
Archaeol Anthropol Sci. 2019;11(5):2167-2179. doi: 10.1007/s12520-018-0665-z. Epub 2018 Jun 18.
7
Longitudinal determinants of 12-month changes on bone health in adolescent male athletes.
Arch Osteoporos. 2018 Oct 10;13(1):106. doi: 10.1007/s11657-018-0519-4.
9
The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children.
Calcif Tissue Int. 2017 May;100(5):500-513. doi: 10.1007/s00223-016-0218-3. Epub 2016 Dec 24.

本文引用的文献

1
Endocrine crosstalk between muscle and bone.
Curr Osteoporos Rep. 2014 Jun;12(2):135-41. doi: 10.1007/s11914-014-0209-0.
3
Muscle-bone interactions: basic and clinical aspects.
Endocrine. 2014 Mar;45(2):165-77. doi: 10.1007/s12020-013-0026-8. Epub 2013 Aug 29.
4
Association between lean and fat mass and indicators of bone health in prepubertal caucasian children.
Horm Res Paediatr. 2013;80(3):154-62. doi: 10.1159/000354043. Epub 2013 Aug 28.
5
Fetal and infant growth predict hip geometry at 6 y old: findings from the Southampton Women's Survey.
Pediatr Res. 2013 Oct;74(4):450-6. doi: 10.1038/pr.2013.119. Epub 2013 Jul 15.
6
7
Fat mass increase in 7-year-old children: more bone area but lower bone mineral density.
J Bone Miner Metab. 2013 Jul;31(4):442-8. doi: 10.1007/s00774-013-0423-3. Epub 2013 Feb 9.
9
Intrauterine growth and postnatal skeletal development: findings from the Southampton Women's Survey.
Paediatr Perinat Epidemiol. 2012 Jan;26(1):34-44. doi: 10.1111/j.1365-3016.2011.01237.x.
10
Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children.
Bone. 2012 Feb;50(2):562-7. doi: 10.1016/j.bone.2011.05.005. Epub 2011 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验