Zang Zhenya, Xiao Dong, Wang Quan, Jiao Ziao, Chen Yu, Li David Day Uei
Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, United Kingdom.
Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom.
Methods Appl Fluoresc. 2023 Mar 20;11(2). doi: 10.1088/2050-6120/acc0d9.
This paper reports a bespoke adder-based deep learning network for time-domain fluorescence lifetime imaging (FLIM). By leveraging thel1-norm extraction method, we propose a 1D Fluorescence Lifetime AdderNet (FLAN) without multiplication-based convolutions to reduce the computational complexity. Further, we compressed fluorescence decays in temporal dimension using a log-scale merging technique to discard redundant temporal information derived as log-scaling FLAN (FLAN+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with FLAN and a conventional 1D convolutional neural network (1D CNN) while maintaining high accuracy in retrieving lifetimes. We extensively evaluated FLAN and FLAN+LS using synthetic and real data. A traditional fitting method and other non-fitting, high-accuracy algorithms were compared with our networks for synthetic data. Our networks attained a minor reconstruction error in different photon-count scenarios. For real data, we used fluorescent beads' data acquired by a confocal microscope to validate the effectiveness of real fluorophores, and our networks can differentiate beads with different lifetimes. Additionally, we implemented the network architecture on a field-programmable gate array (FPGA) with a post-quantization technique to shorten the bit-width, thereby improving computing efficiency. FLAN+LS on hardware achieves the highest computing efficiency compared to 1D CNN and FLAN. We also discussed the applicability of our network and hardware architecture for other time-resolved biomedical applications using photon-efficient, time-resolved sensors.
本文报道了一种用于时域荧光寿命成像(FLIM)的基于定制加法器的深度学习网络。通过利用l1范数提取方法,我们提出了一种一维荧光寿命加法网络(FLAN),该网络不使用基于乘法的卷积,以降低计算复杂度。此外,我们使用对数尺度合并技术在时间维度上压缩荧光衰减,以丢弃对数尺度FLAN(FLAN+LS)中派生的冗余时间信息。与FLAN和传统的一维卷积神经网络(1D CNN)相比,FLAN+LS实现了0.11和0.23的压缩率,同时在寿命检索方面保持了高精度。我们使用合成数据和真实数据对FLAN和FLAN+LS进行了广泛评估。对于合成数据,将传统的拟合方法和其他非拟合的高精度算法与我们的网络进行了比较。我们的网络在不同光子计数场景下获得了较小的重建误差。对于真实数据,我们使用共聚焦显微镜采集的荧光珠数据来验证真实荧光团的有效性,并且我们的网络可以区分具有不同寿命的珠子。此外,我们使用后量化技术在现场可编程门阵列(FPGA)上实现了网络架构,以缩短位宽,从而提高计算效率。与1D CNN和FLAN相比,硬件上的FLAN+LS实现了最高的计算效率。我们还讨论了我们的网络和硬件架构对于其他使用光子高效、时间分辨传感器的时间分辨生物医学应用的适用性。