Suppr超能文献

基于保边插值的图像重建快速获取活细胞高像素荧光寿命图像

Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation.

作者信息

Zhu Yinru, Guo Yong, Gao Xinwei, Chen Qinglin, Chen Yingying, Xiang Ruijie, Lin Baichang, Wang Luwei, Lu Yuan, Yan Wei

机构信息

State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

The 6th Affiliated Hospital of Shenzhen University, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518060, China.

出版信息

Biosensors (Basel). 2025 Jan 13;15(1):43. doi: 10.3390/bios15010043.

Abstract

Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times. Specifically, we decouple the grayscale image and the fluorescence lifetime matrix and perform an individual interpolation on each. Following the interpolation of the intensity image, we apply wavelet transformation and adjust the wavelet coefficients according to the image gradients. After the inverse transformation, the original image is obtained and subjected to noise reduction to complete the image reconstruction process. Subsequently, each pixel is pseudo-color-coded based on its intensity and lifetime, preserving both structural and temporal information. We evaluated the performance of the bicubic interpolation method and our image reconstruction approach on fluorescence microspheres and fixed-cell samples, demonstrating their effectiveness in enhancing the quality of lifetime images. By applying these techniques to live-cell imaging, we can successfully obtain high-pixel FLIM images at shortened intervals, facilitating the capture of rapid cellular events.

摘要

荧光寿命成像(FLIM)已成为研究活细胞内生物过程的关键工具。然而,为了进行准确的荧光寿命计算而积累足够光子所需的长时间成像,对实现细胞动力学的高分辨率监测构成了重大障碍。在本研究中,我们引入了一种基于保边插值方法(EPIM)的图像重建方法,该方法将快速采集的低分辨率FLIM数据转换为高像素图像,从而无需延长采集时间。具体而言,我们将灰度图像和荧光寿命矩阵解耦,并分别对它们进行插值。在强度图像插值之后,我们应用小波变换并根据图像梯度调整小波系数。经过逆变换后,获得原始图像并进行降噪以完成图像重建过程。随后,根据每个像素的强度和寿命进行伪彩色编码,同时保留结构和时间信息。我们在荧光微球和固定细胞样本上评估了双三次插值方法和我们的图像重建方法的性能,证明了它们在提高寿命图像质量方面的有效性。通过将这些技术应用于活细胞成像,我们可以在更短的时间间隔内成功获得高像素FLIM图像,便于捕捉快速的细胞事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce32/11763502/83e05e8d9fff/biosensors-15-00043-g001.jpg

相似文献

2
Texture features-guided image reconstruction kernel method forF-FDG delayed PET imaging.
Phys Med Biol. 2025 Jul 17;70(14). doi: 10.1088/1361-6560/adee74.
4
Deep Learning for Fluorescence Lifetime Predictions Enables High-Throughput In Vivo Imaging.
J Am Chem Soc. 2025 Jul 2;147(26):22609-22621. doi: 10.1021/jacs.5c03749. Epub 2025 Jun 14.
7
2-D Stationary Wavelet Transform and 2-D Dual-Tree DWT for MRI Denoising.
Curr Med Imaging. 2025 Jul 7. doi: 10.2174/0115734056365765250630140748.
10
Sparse-view spectral CT reconstruction via a coupled subspace representation and score-based generative model.
Quant Imaging Med Surg. 2025 Jun 6;15(6):5474-5495. doi: 10.21037/qims-24-2226. Epub 2025 May 28.

本文引用的文献

1
Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D.
Curr Opin Solid State Mater Sci. 2024 Jun;30. doi: 10.1016/j.cossms.2024.101147. Epub 2024 Mar 18.
2
Research of Pulmonary Fibrosis Lesions Based on FLIM and SHG Imaging Microscopy.
Anal Chem. 2024 Jul 16. doi: 10.1021/acs.analchem.4c01303.
3
Analog multiplexing of a laser clock and computational photon counting for fast fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2024 Mar 4;15(4):2048-2062. doi: 10.1364/BOE.514813. eCollection 2024 Apr 1.
4
Fluorescence lifetime imaging microscopy for early diagnosis and severity prediction of preeclampsia with Nile Blue probe.
Biosens Bioelectron. 2024 Jan 15;244:115809. doi: 10.1016/j.bios.2023.115809. Epub 2023 Oct 31.
5
Fluorescence lifetime tracking and imaging of single moving particles assisted by a low-photon-count analysis algorithm.
Biomed Opt Express. 2023 Mar 29;14(4):1718-1731. doi: 10.1364/BOE.485729. eCollection 2023 Apr 1.
7
Compact and robust deep learning architecture for fluorescence lifetime imaging and FPGA implementation.
Methods Appl Fluoresc. 2023 Mar 20;11(2). doi: 10.1088/2050-6120/acc0d9.
8
Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine.
Sensors (Basel). 2022 May 15;22(10):3758. doi: 10.3390/s22103758.
9
Spatial resolution improved fluorescence lifetime imaging via deep learning.
Opt Express. 2022 Mar 28;30(7):11479-11494. doi: 10.1364/OE.451215.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验