Suppr超能文献

智能广角荧光寿命成像系统与 CMOS 单光子雪崩二极管阵列。

Smart Wide-field Fluorescence Lifetime Imaging System with CMOS Single-photon Avalanche Diode Arrays.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1887-1890. doi: 10.1109/EMBC48229.2022.9870996.

Abstract

Wide-field fluorescence lifetime imaging (FLIM) is a promising technique for biomedical and clinic applications. Integrating with CMOS single-photon avalanche diode (SPAD) sensor arrays can lead to cheaper and portable real-time FLIM systems. However, the FLIM data obtained by such sensor systems often have sophisticated noise features. There is still a lack of fast tools to recover lifetime parameters from highly noise-corrupted fluorescence signals efficiently. This paper proposes a smart wide-field FLIM system containing a 192×128 COMS SPAD sensor and a field-programmable gate array (FPGA) embedded deep learning (DL) FLIM processor. The processor adopts a hardware-friendly and light-weighted neural network for fluorescence lifetime analysis, showing the advantages of high accuracy against noise, fast speed, and low power consumption. Experimental results demonstrate the proposed system's superior and robust performances, promising for many FLIM applications such as FLIM-guided clinical surgeries, cancer diagnosis, and biomedical imaging.

摘要

宽场荧光寿命成像(FLIM)是一种有前途的生物医学和临床应用技术。与 CMOS 单光子雪崩二极管(SPAD)传感器阵列集成,可以实现更便宜、更便携的实时 FLIM 系统。然而,此类传感器系统获得的 FLIM 数据通常具有复杂的噪声特征。仍然缺乏从高度噪声污染的荧光信号中有效恢复寿命参数的快速工具。本文提出了一种智能宽场 FLIM 系统,包含一个 192×128 的 CMOS SPAD 传感器和一个现场可编程门阵列(FPGA)嵌入式深度学习(DL)FLIM 处理器。该处理器采用一种硬件友好且轻量级的神经网络进行荧光寿命分析,具有抗噪声精度高、速度快、功耗低的优点。实验结果证明了所提出系统的优越和稳健性能,有望应用于 FLIM 引导的临床手术、癌症诊断和生物医学成像等许多 FLIM 应用。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验