Suppr超能文献

SPA-STOCSY:一种用于在高通量核磁共振光谱中识别已注释和未注释代谢物的自动化工具。

SPA-STOCSY: An Automated Tool for Identification of Annotated and Non-Annotated Metabolites in High-Throughput NMR Spectra.

作者信息

Han Xu, Wang Wanli, Ma Li-Hua, Al-Ramahi Ismael, Botas Juan, MacKenzie Kevin, Allen Genevera I, Young Damian W, Liu Zhandong, Maletic-Savatic Mirjana

机构信息

Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.

Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.

出版信息

bioRxiv. 2023 Feb 22:2023.02.22.529564. doi: 10.1101/2023.02.22.529564.

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is widely used to analyze metabolites in biological samples, but the analysis can be cumbersome and inaccurate. Here, we present a powerful automated tool, SPA-STOCSY (Spatial Clustering Algorithm - Statistical Total Correlation Spectroscopy), which overcomes the challenges by identifying metabolites in each sample with high accuracy. As a data-driven method, SPA-STOCSY estimates all parameters from the input dataset, first investigating the covariance pattern and then calculating the optimal threshold with which to cluster data points belonging to the same structural unit, i.e. metabolite. The generated clusters are then automatically linked to a compound library to identify candidates. To assess SPA-STOCSY’s efficiency and accuracy, we applied it to synthesized and real NMR data obtained from brains and human embryonic stem cells. In the synthesized spectra, SPA outperforms Statistical Recoupling of Variables, an existing method for clustering spectral peaks, by capturing a higher percentage of the signal regions and the close-to-zero noise regions. In the real spectra, SPA-STOCSY performs comparably to operator-based Chenomx analysis but avoids operator bias and performs the analyses in less than seven minutes of total computation time. Overall, SPA-STOCSY is a fast, accurate, and unbiased tool for untargeted analysis of metabolites in the NMR spectra. As such, it might accelerate the utilization of NMR for scientific discoveries, medical diagnostics, and patient-specific decision making.

摘要

核磁共振(NMR)光谱法被广泛用于分析生物样品中的代谢物,但这种分析可能既繁琐又不准确。在此,我们展示了一种强大的自动化工具,即SPA - STOCSY(空间聚类算法 - 统计全相关光谱法),它通过高精度识别每个样品中的代谢物来克服这些挑战。作为一种数据驱动的方法,SPA - STOCSY从输入数据集中估计所有参数,首先研究协方差模式,然后计算用于对属于同一结构单元(即代谢物)的数据点进行聚类的最佳阈值。然后将生成的聚类自动链接到化合物库以识别候选物。为了评估SPA - STOCSY的效率和准确性,我们将其应用于从大脑和人类胚胎干细胞获得的数据合成的以及真实的NMR数据。在合成光谱中,与现有的一种用于聚类光谱峰的方法——变量统计重新耦合相比,SPA能捕获更高比例的信号区域和接近零的噪声区域,表现更优。在真实光谱中,SPA - STOCSY的表现与基于操作员的Chenomx分析相当,但避免了操作员偏差,并且在不到7分钟的总计算时间内完成分析。总体而言,SPA - STOCSY是一种用于对NMR光谱中的代谢物进行非靶向分析的快速、准确且无偏差的工具。因此,它可能会加速NMR在科学发现、医学诊断和针对患者的决策制定中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dc2/9980041/37e4ce648d4b/nihpp-2023.02.22.529564v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验