Suppr超能文献

利用进化光酶实现芳烃的区域选择性自由基烷基化反应

Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes.

作者信息

Page Claire G, Cao Jingzhe, Oblinsky Daniel G, MacMillan Samantha N, Dahagam Shiva, Lloyd Ruth M, Charnock Simon J, Scholes Gregory D, Hyster Todd K

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States.

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

出版信息

Res Sq. 2023 Feb 23:rs.3.rs-2602958. doi: 10.21203/rs.3.rs-2602958/v1.

Abstract

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes, however, the selectivity of existing methods is modest and primarily governed by substrate electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective 'ene'-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground state change transfer in the CT complex. Mechanistic studies on a C2 selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8 selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective reactions where small molecule catalysts struggle to alter selectivity.

摘要

取代芳烃在具有药用功能的分子中普遍存在,因此在设计合成路线时,其合成是一个关键的考虑因素。区域选择性C-H官能化反应对于制备烷基化芳烃具有吸引力,然而,现有方法的选择性一般,且主要受底物电子性质的控制。在此,我们展示了一种生物催化剂控制的方法,用于富电子和缺电子杂芳烃的区域选择性烷基化。从一种非选择性的“烯”还原酶(ERED)(GluER-T36A)开始,我们进化出了一种变体,该变体可选择性地将吲哚的C4位烷基化,这是一个使用现有技术难以实现的位置。对整个进化系列的机理研究表明,蛋白质活性位点的变化改变了负责自由基形成的电荷转移(CT)络合物的电子特性。这导致了一种在CT络合物中具有显著程度基态电荷转移的变体。对一种C2选择性ERED的机理研究表明,GluER-T36A的进化有助于抑制一种竞争性的机理途径。针对C8选择性喹啉烷基化开展了额外的蛋白质工程研究。这项研究突出了利用酶进行区域选择性反应的机会,而小分子催化剂在这些反应中难以改变选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fa9/9980219/57e9e7b629b3/nihpp-rs2602958v1-f0001.jpg

相似文献

1
Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes.
Res Sq. 2023 Feb 23:rs.3.rs-2602958. doi: 10.21203/rs.3.rs-2602958/v1.
2
Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes.
J Am Chem Soc. 2023 May 31;145(21):11866-11874. doi: 10.1021/jacs.3c03607. Epub 2023 May 18.
3
Beyond Friedel and Crafts: Innate Alkylation of C-H Bonds in Arenes.
Angew Chem Int Ed Engl. 2019 Jun 3;58(23):7558-7598. doi: 10.1002/anie.201806631. Epub 2019 Apr 4.
4
ZnMe-Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism.
J Am Chem Soc. 2020 Jul 29;142(30):13235-13245. doi: 10.1021/jacs.0c06827. Epub 2020 Jul 13.
6
Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.
Acc Chem Res. 2020 Apr 21;53(4):920-936. doi: 10.1021/acs.accounts.0c00036. Epub 2020 Apr 2.
7
From C4 to C7: Innovative Strategies for Site-Selective Functionalization of Indole C-H Bonds.
Acc Chem Res. 2021 Apr 6;54(7):1723-1736. doi: 10.1021/acs.accounts.0c00888. Epub 2021 Mar 12.
8
Transition-Metal-Catalyzed Divergent C-H Functionalization of Five-Membered Heteroarenes.
Acc Chem Res. 2021 Dec 21;54(24):4518-4529. doi: 10.1021/acs.accounts.1c00547. Epub 2021 Dec 10.
9
Regiodivergent Radical Termination for Intermolecular Biocatalytic C-C Bond Formation.
J Am Chem Soc. 2024 Feb 21;146(7):5005-5010. doi: 10.1021/jacs.4c00482. Epub 2024 Feb 8.
10
Directed Evolution of a Cytochrome P450 Carbene Transferase for Selective Functionalization of Cyclic Compounds.
J Am Chem Soc. 2019 Jun 5;141(22):8989-8995. doi: 10.1021/jacs.9b02931. Epub 2019 May 22.

本文引用的文献

1
Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations.
Nature. 2023 Mar;615(7950):67-72. doi: 10.1038/s41586-022-05667-0. Epub 2023 Jan 5.
2
An asymmetric sp-sp cross-electrophile coupling using 'ene'-reductases.
Nature. 2022 Oct;610(7931):302-307. doi: 10.1038/s41586-022-05167-1. Epub 2022 Aug 11.
3
Molecular editing of aza-arene C-H bonds by distance, geometry and chirality.
Nature. 2022 Oct;610(7930):87-93. doi: 10.1038/s41586-022-05175-1. Epub 2022 Aug 9.
4
Advancements in Visible-Light-Enabled Radical C(sp)2-H Alkylation of (Hetero)arenes.
Synthesis (Stuttg). 2019 Mar;51(5):1063-1072. doi: 10.1055/s-0037-1611658. Epub 2019 Jan 25.
5
Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols.
Angew Chem Int Ed Engl. 2022 Jun 20;61(25):e202200266. doi: 10.1002/anie.202200266. Epub 2022 Apr 27.
6
Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene"-Reductases.
J Am Chem Soc. 2021 Dec 1;143(47):19643-19647. doi: 10.1021/jacs.1c09828. Epub 2021 Nov 16.
7
Engineering a Non-Natural Photoenzyme for Improved Photon Efficiency.
Angew Chem Int Ed Engl. 2022 Jan 10;61(2):e202113842. doi: 10.1002/anie.202113842. Epub 2021 Dec 2.
8
Ground-State Electron Transfer as an Initiation Mechanism for Biocatalytic C-C Bond Forming Reactions.
J Am Chem Soc. 2021 Jun 30;143(25):9622-9629. doi: 10.1021/jacs.1c04334. Epub 2021 Jun 11.
9
Arene diversification through distal C(sp)-H functionalization.
Science. 2021 May 14;372(6543). doi: 10.1126/science.abd5992.
10
From C4 to C7: Innovative Strategies for Site-Selective Functionalization of Indole C-H Bonds.
Acc Chem Res. 2021 Apr 6;54(7):1723-1736. doi: 10.1021/acs.accounts.0c00888. Epub 2021 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验