Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.
J Am Chem Soc. 2019 Jun 5;141(22):8989-8995. doi: 10.1021/jacs.9b02931. Epub 2019 May 22.
Transfers of carbene moieties to heterocycles or cyclic alkenes to obtain C(sp)-H alkylation or cyclopropane products are valuable transformations for synthesis of pharmacophores and chemical building blocks. Through their readily tunable active-site geometries, hemoprotein "carbene transferases" could provide an alternative to traditional transition metal catalysts by enabling heterocycle functionalizations with high chemo-, regio-, and stereocontrol. However, carbene transferases accepting heterocyclic substrates are scarce; the few enzymes capable of heterocycle or cyclic internal alkene functionalization described to date are characterized by low turnovers or depend on artificially introduced, costly iridium-porphyrin cofactors. We addressed this challenge by evolving a cytochrome P450 for highly efficient carbene transfer to indoles, pyrroles, and cyclic alkenes. We first developed a spectrophotometric high-throughput screening assay based on 1-methylindole C-alkylation that enabled rapid analysis of thousands of P450 variants and comprehensive directed evolution via random and targeted mutagenesis. This effort yielded a P450 variant with 11 amino acid substitutions and a large deletion of the non-catalytic P450 reductase domain, which chemoselectively C-alkylates indoles with up to 470 turnovers per minute and 18 000 total turnovers. We subsequently used this optimized alkylation variant for parallel evolution toward more challenging heterocycle carbene functionalizations, including C/ C regioselective pyrrole alkylation, enantioselective indole alkylation with ethyl 2-diazopropanoate, and cyclic internal alkene cyclopropanation. The resulting set of efficient biocatalysts showcases the tunability of hemoproteins for highly selective functionalization of cyclic targets and the power of directed evolution to enhance the scope of new-to-nature enzyme catalysts.
将碳烯部分转移到杂环或环状烯烃中,以获得 C(sp)-H 烷基化或环丙烷产物,这是合成药效团和化学构建块的有价值的转化。通过其可轻松调节的活性位点几何形状,血红素“碳烯转移酶”可以通过对杂环进行高化学选择性、区域选择性和立体选择性的功能化,为传统过渡金属催化剂提供替代方法。然而,接受杂环底物的碳烯转移酶却很少;迄今为止,能够对杂环或环状内部烯烃进行功能化的少数几种酶的特点是周转率低,或者依赖于人为引入的昂贵的铱卟啉辅因子。为了应对这一挑战,我们对细胞色素 P450 进行了进化,以实现高效的吲哚、吡咯和环状烯烃的碳烯转移。我们首先开发了一种基于 1-甲基吲哚 C-烷基化的分光光度高通量筛选测定法,该方法能够快速分析数千种 P450 变体,并通过随机和靶向诱变进行全面的定向进化。这项工作产生了一种 P450 变体,它具有 11 个氨基酸取代和非催化 P450 还原酶结构域的大片段缺失,该变体对吲哚具有化学选择性 C-烷基化作用,每分钟可达 470 个周转率,总周转率可达 18000 个。随后,我们使用这种经过优化的烷基化变体进行平行进化,以实现更具挑战性的杂环碳烯功能化,包括 C/C 区域选择性吡咯烷基化、乙基 2-二氮丙酸盐的对映选择性吲哚烷基化以及环状内部烯烃的环丙烷化。由此产生的一组高效生物催化剂展示了血红素蛋白在高度选择性地对环状靶标进行功能化方面的可调节性,以及定向进化在增强新型天然酶催化剂的应用范围方面的强大功能。