Suppr超能文献

利用电子数据扩展感染检测范围,超越传统环境和定义(第二部分/第三部分)

Leveraging electronic data to expand infection detection beyond traditional settings and definitions (Part II/III).

作者信息

Branch-Elliman Westyn, Sundermann Alexander J, Wiens Jenna, Shenoy Erica S

机构信息

Section of Infectious Diseases, Department of Medicine, Veterans' Affairs (VA) Boston Healthcare System, Boston, Massachusetts.

VA Boston Center for Healthcare Organization and Implementation Research (CHOIR), Boston, Massachusetts.

出版信息

Antimicrob Steward Healthc Epidemiol. 2023 Feb 10;3(1):e27. doi: 10.1017/ash.2022.342. eCollection 2023.

Abstract

The rich and complex electronic health record presents promise for expanding infection detection beyond currently covered settings of care. Here, we review the "how to" of leveraging electronic data sources to expand surveillance to settings of care and infections that have not been the traditional purview of the National Healthcare Safety Network (NHSN), including a discussion of creation of objective and reproducible infection surveillance definitions. In pursuit of a 'fully automated' system, we also examine the promises and pitfalls of leveraging unstructured, free-text data to support infection prevention activities and emerging technological advances that will likely affect the practice of automated infection surveillance. Finally, barriers to achieving a completely 'automated' infection detection system and challenges with intra- and interfacility reliability and missing data are discussed.

摘要

丰富而复杂的电子健康记录有望将感染检测扩展到当前涵盖的护理环境之外。在此,我们回顾如何利用电子数据源将监测扩展到护理环境以及尚未纳入国家医疗安全网络(NHSN)传统范围的感染,包括对创建客观且可重复的感染监测定义的讨论。为了实现一个“全自动”系统,我们还研究了利用非结构化自由文本数据支持感染预防活动的前景与陷阱,以及可能影响自动感染监测实践的新兴技术进展。最后,讨论了实现完全“自动化”感染检测系统的障碍以及机构内部和机构间可靠性及数据缺失方面的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e7/9972537/68e0a3ed386f/S2732494X22003424_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验