Suppr超能文献

开发一种用于预测全髋关节置换术后并发症的新型、可能通用的机器学习算法。

Development of a Novel, Potentially Universal Machine Learning Algorithm for Prediction of Complications After Total Hip Arthroplasty.

作者信息

Shah Akash A, Devana Sai K, Lee Changhee, Kianian Reza, van der Schaar Mihaela, SooHoo Nelson F

机构信息

Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA.

Department of Electrical and Computer Engineering, University of California, Los Angeles, CA.

出版信息

J Arthroplasty. 2021 May;36(5):1655-1662.e1. doi: 10.1016/j.arth.2020.12.040. Epub 2020 Dec 30.

Abstract

BACKGROUND

As the prevalence of hip osteoarthritis increases, the number of total hip arthroplasty (THA) procedures performed is also projected to increase. Accurately risk-stratifying patients who undergo THA would be of great utility, given the significant cost and morbidity associated with developing perioperative complications. We aim to develop a novel machine learning (ML)-based ensemble algorithm for the prediction of major complications after THA, as well as compare its performance against standard benchmark ML methods.

METHODS

This is a retrospective cohort study of 89,986 adults who underwent primary THA at any California-licensed hospital between 2015 and 2017. The primary outcome was major complications (eg infection, venous thromboembolism, cardiac complication, pulmonary complication). We developed a model predicting complication risk using AutoPrognosis, an automated ML framework that configures the optimally performing ensemble of ML-based prognostic models. We compared our model with logistic regression and standard benchmark ML models, assessing discrimination and calibration.

RESULTS

There were 545 patients who had major complications (0.61%). Our novel algorithm was well-calibrated and improved risk prediction compared to logistic regression, as well as outperformed the other four standard benchmark ML algorithms. The variables most important for AutoPrognosis (eg malnutrition, dementia, cancer) differ from those that are most important for logistic regression (eg chronic atherosclerosis, renal failure, chronic obstructive pulmonary disease).

CONCLUSION

We report a novel ensemble ML algorithm for the prediction of major complications after THA. It demonstrates superior risk prediction compared to logistic regression and other standard ML benchmark algorithms. By providing accurate prognostic information, this algorithm may facilitate more informed preoperative shared decision-making.

摘要

背景

随着髋骨关节炎患病率的增加,全髋关节置换术(THA)的手术数量预计也会上升。鉴于围手术期并发症的发生会带来巨大的成本和发病率,准确地对接受THA的患者进行风险分层将非常有用。我们旨在开发一种基于机器学习(ML)的新型集成算法,用于预测THA术后的主要并发症,并将其性能与标准的基准ML方法进行比较。

方法

这是一项对2015年至2017年间在加利福尼亚州任何一家持牌医院接受初次THA的89986名成年人进行的回顾性队列研究。主要结局是主要并发症(如感染、静脉血栓栓塞、心脏并发症、肺部并发症)。我们使用AutoPrognosis开发了一个预测并发症风险的模型,AutoPrognosis是一个自动化的ML框架,可配置性能最佳的基于ML的预后模型集成。我们将我们的模型与逻辑回归和标准基准ML模型进行比较,评估辨别力和校准情况。

结果

有545名患者发生了主要并发症(0.61%)。我们的新算法校准良好,与逻辑回归相比,改善了风险预测,并且优于其他四种标准基准ML算法。对AutoPrognosis最重要的变量(如营养不良、痴呆、癌症)与对逻辑回归最重要的变量(如慢性动脉粥样硬化、肾衰竭、慢性阻塞性肺疾病)不同。

结论

我们报告了一种用于预测THA术后主要并发症的新型集成ML算法。与逻辑回归和其他标准ML基准算法相比,它显示出卓越的风险预测能力。通过提供准确的预后信息,该算法可能有助于在术前做出更明智的共同决策。

相似文献

1
Development of a Novel, Potentially Universal Machine Learning Algorithm for Prediction of Complications After Total Hip Arthroplasty.
J Arthroplasty. 2021 May;36(5):1655-1662.e1. doi: 10.1016/j.arth.2020.12.040. Epub 2020 Dec 30.
2
Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
Clin Orthop Relat Res. 2022 Nov 1;480(11):2137-2145. doi: 10.1097/CORR.0000000000002276. Epub 2022 Jun 20.
3
Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty.
Arch Orthop Trauma Surg. 2023 Apr;143(4):2181-2188. doi: 10.1007/s00402-022-04452-y. Epub 2022 May 4.
6
Can machine learning models predict failure of revision total hip arthroplasty?
Arch Orthop Trauma Surg. 2023 Jun;143(6):2805-2812. doi: 10.1007/s00402-022-04453-x. Epub 2022 May 4.
8
Patients With Femoral Neck Fractures Are at Risk for Conversion to Arthroplasty After Internal Fixation: A Machine-learning Algorithm.
Clin Orthop Relat Res. 2022 Dec 1;480(12):2350-2360. doi: 10.1097/CORR.0000000000002283. Epub 2022 Jun 21.
9
10
Development of Machine Learning Algorithms for Prediction of Sustained Postoperative Opioid Prescriptions After Total Hip Arthroplasty.
J Arthroplasty. 2019 Oct;34(10):2272-2277.e1. doi: 10.1016/j.arth.2019.06.013. Epub 2019 Jun 13.

引用本文的文献

2
A Novel Machine Learning Model to Predict Revision ACL Reconstruction Failure in the MARS Cohort.
Orthop J Sports Med. 2024 Nov 14;12(11):23259671241291920. doi: 10.1177/23259671241291920. eCollection 2024 Nov.
4
The Use of Artificial Intelligence for Orthopedic Surgical Backlogs Such as the One Following the COVID-19 Pandemic: A Narrative Review.
JB JS Open Access. 2024 Sep 19;9(3). doi: 10.2106/JBJS.OA.24.00100. eCollection 2024 Jul-Sep.
6
Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis.
Eur J Haematol. 2023 Dec;111(6):951-962. doi: 10.1111/ejh.14110. Epub 2023 Oct 4.
7
AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning.
PLOS Digit Health. 2023 Jun 22;2(6):e0000276. doi: 10.1371/journal.pdig.0000276. eCollection 2023 Jun.
8
Leveraging electronic data to expand infection detection beyond traditional settings and definitions (Part II/III).
Antimicrob Steward Healthc Epidemiol. 2023 Feb 10;3(1):e27. doi: 10.1017/ash.2022.342. eCollection 2023.
9
Deep learning-based prediction model for postoperative complications of cervical posterior longitudinal ligament ossification.
Eur Spine J. 2023 Nov;32(11):3797-3806. doi: 10.1007/s00586-023-07562-2. Epub 2023 Feb 6.
10
Artificial intelligence and machine learning as a viable solution for hip implant failure diagnosis-Review of literature and in vitro case study.
Med Biol Eng Comput. 2023 Jun;61(6):1239-1255. doi: 10.1007/s11517-023-02779-1. Epub 2023 Jan 26.

本文引用的文献

1
Total Hip Arthroplasty in Patients With Dementia.
J Arthroplasty. 2020 Jun;35(6):1667-1670.e2. doi: 10.1016/j.arth.2020.01.070. Epub 2020 Feb 4.
2
Effect of hospital volume on outcomes of total hip arthroplasty: a systematic review and meta-analysis.
J Orthop Surg Res. 2019 Dec 27;14(1):468. doi: 10.1186/s13018-019-1531-0.
4
Complications and Readmission Incidence Following Total Hip Arthroplasty in Patients Who Have End-Stage Renal Failure.
J Arthroplasty. 2020 Mar;35(3):794-800. doi: 10.1016/j.arth.2019.10.042. Epub 2019 Oct 30.
7
Artificial Intelligence and Machine Learning in Lower Extremity Arthroplasty: A Review.
J Arthroplasty. 2019 Oct;34(10):2201-2203. doi: 10.1016/j.arth.2019.05.055. Epub 2019 Jun 11.
8
The Role of Malnutrition in Ninety-Day Outcomes After Total Joint Arthroplasty.
J Arthroplasty. 2019 Nov;34(11):2594-2600. doi: 10.1016/j.arth.2019.05.060. Epub 2019 Jun 6.
9
Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?
J Arthroplasty. 2019 Oct;34(10):2235-2241.e1. doi: 10.1016/j.arth.2019.05.048. Epub 2019 Jun 3.
10
Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
PLoS One. 2019 May 15;14(5):e0213653. doi: 10.1371/journal.pone.0213653. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验