Department of Allergy and Clinical Immunology, Asan Medical Center, 05505 Seoul, Republic of Korea.
Department of Epidemiology and Biostatistics, Indiana University, School of Public Health, Bloomington, IN 47405, USA.
Front Biosci (Landmark Ed). 2023 Feb 20;28(2):30. doi: 10.31083/j.fbl2802030.
Obesity results from a chronic imbalance between energy intake and energy expenditure. Total energy expenditure for all physiological functions combined can be measured approximately by calorimeters. These devices assess energy expenditure frequently (e.g., in 60-second epochs), resulting in massive complex data that are nonlinear functions of time. To reduce the prevalence of obesity, researchers often design targeted therapeutic interventions to increase daily energy expenditure.
We analyzed previously collected data on the effects of oral interferon tau supplementation on energy expenditure, as assessed with indirect calorimeters, in an animal model for obesity and type 2 diabetes (Zucker diabetic fatty rats). In our statistical analyses, we compared parametric polynomial mixed effects models and more flexible semiparametric models involving spline regression.
We found no effect of interferon tau dose (0 vs. 4 μg/kg body weight/day) on energy expenditure. The B-spline semiparametric model of untransformed energy expenditure with a quadratic term for time performed best in terms of the Akaike information criterion value.
To analyze the effects of interventions on energy expenditure assessed with devices that collect data at frequent intervals, we recommend first summarizing the high dimensional data into epochs of 30 to 60 minutes to reduce noise. We also recommend flexible modeling approaches to account for the nonlinear patterns in such high dimensional functional data. We provide freely available R codes in GitHub.
肥胖是由能量摄入和能量消耗之间的慢性失衡引起的。所有生理功能的总能量消耗可以通过热量计大致测量。这些设备频繁评估能量消耗(例如,每 60 秒一个时期),导致大量复杂的数据是非线性的时间函数。为了降低肥胖的患病率,研究人员经常设计有针对性的治疗干预措施来增加每日能量消耗。
我们分析了先前收集的关于口服干扰素 tau 补充剂对能量消耗的影响的数据,这些数据是通过间接热量计在肥胖和 2 型糖尿病(Zucker 糖尿病肥胖大鼠)动物模型中评估的。在我们的统计分析中,我们比较了参数多项式混合效应模型和更灵活的涉及样条回归的半参数模型。
我们没有发现干扰素 tau 剂量(0 与 4 μg/kg 体重/天)对能量消耗的影响。未转换的能量消耗的 B-样条半参数模型具有时间的二次项,在赤池信息量准则值方面表现最佳。
为了分析通过频繁收集数据的设备评估的干预措施对能量消耗的影响,我们建议首先将高维数据汇总到 30 到 60 分钟的时期,以减少噪声。我们还建议采用灵活的建模方法来解释这种高维功能数据中的非线性模式。我们在 GitHub 上提供了免费的 R 代码。