School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.
Adv Mater. 2023 Jun;35(22):e2300124. doi: 10.1002/adma.202300124. Epub 2023 Apr 14.
Ultra-efficient broadband near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) are urgently needed to improve the detection sensitivity and spatial resolution of current smart NIR spectroscopy-based techniques. Nonetheless, the performance of NIR pc-LED has severely limited owing to the external quantum efficiency (EQE) bottleneck of NIR light-emitting materials. Herein, a blue LED excitable Cr -doped tetramagnesium ditantalate (Mg Ta O , MT) phosphor is advantageously modified through lithium ion as a key efficient broadband NIR emitter to achieve high optical output power of the NIR light source. The emission spectrum encompasses the 700-1300 nm electromagnetic spectrum of first biological window (λ = 842 nm) with a full-width at half-maximum (FWHM) of ≈2280 cm (≈167 nm), and achieves a record EQE of 61.25% detected at 450 nm excitation through Li-ion compensation. A prototype NIR pc-LED is fabricated with MT:Cr , Li to evaluate its potential practical application, which reveals an NIR output power of 53.22 mW at a driving current of 100 mA, and a photoelectric conversion efficiency of 25.09% at 10 mA. This work provides an ultra-efficient broadband NIR luminescent material, which shows great promise in practical applications and presents a novel option for the next-generation high-power compact NIR light sources.
高效宽带近红外(NIR)荧光粉转换发光二极管(pc-LED)对于提高基于智能近红外光谱技术的检测灵敏度和空间分辨率至关重要。然而,由于近红外发光材料的外量子效率(EQE)瓶颈,NIR pc-LED 的性能受到严重限制。在此,通过锂离子作为关键的高效宽带近红外发射器,对可被蓝色 LED 激发的 Cr 掺杂四镁二钽酸盐(Mg Ta O ,MT)荧光粉进行了有利的修饰,从而实现了近红外光源的高光功率输出。发射光谱涵盖了第一生物窗口(λ=842nm)的 700-1300nm 电磁光谱,半最大值全宽(FWHM)约为 2280cm(≈167nm),并通过 Li 离子补偿实现了 450nm 激发下创纪录的 EQE 为 61.25%。通过 MT:Cr、Li 制备了 NIR pc-LED 原型,以评估其潜在的实际应用,该原型在 100mA 驱动电流下可实现 53.22mW 的 NIR 输出功率,在 10mA 时光电转换效率为 25.09%。这项工作提供了一种高效宽带近红外发光材料,在实际应用中具有广阔的前景,并为下一代高功率紧凑型近红外光源提供了一种新的选择。