Suppr超能文献

通过磷酸三苯酯处理整合表面结构以稳定富锂锰基正极材料。

Integrating surface structure via triphenyl phosphate treatment to stabilize Li-rich Mn-based cathode materials.

作者信息

Zhang Shuai, Li Shihao, Zhang Haiyan, Guo Juanlang, Gao Xianggang, Shi Hongbing, Liu Fangyan, Huang Zeyu, Li Simin, Zhang Zhian

机构信息

School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, PR China.

School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, PR China; Hunan ChangYuan LiCo Co., Ltd, Changsha, Hunan 410205, PR China.

出版信息

J Colloid Interface Sci. 2023 Jun 15;640:373-382. doi: 10.1016/j.jcis.2023.02.054. Epub 2023 Feb 27.

Abstract

Li-rich Mn-based layered oxides (LLOs) have emerged as one of the most promising cathode materials for the next-generation lithium-ion batteries (LIBs) because of their high energy density, high specific capacity, and environmental friendliness. These materials, however, have drawbacks such as capacity degradation, low initial coulombic efficiency (ICE), voltage decay, and poor rate performance due to irreversible oxygen release and structural deterioration during cycling. Herein, we present a facile method of triphenyl phosphate (TPP) surface treatment to create an integrated surface structure on LLOs that includes oxygen vacancies, LiPO, and carbon. When used for LIBs, the treated LLOs show an increased initial coulombic efficiency (ICE) of 83.6% and capacity retention of 84.2% at 1C after 200 cycles. It is suggested that the enhanced performance of the treated LLOs can be attributed to the synergetic functions of each component in the integrated surface, such as the oxygen vacancy and LiPO being able to inhibit the evolution of oxygen and accelerate the transport of lithium ions, while the carbon layer can restrain undesirable interfacial side reactions and reduce the dissolution of transition metals. Furthermore, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) prove an enhanced kinetic property of the treated LLOs cathode, and ex-situ X-ray diffractometer shows a suppressed structural transformation of TPP-treated LLOs during the battery reaction. This study provides an effective strategy for constructing an integrated surface structure on LLOs to achieve high-energy cathode materials in LIBs.

摘要

富锂锰基层状氧化物(LLOs)因其高能量密度、高比容量和环境友好性,已成为下一代锂离子电池(LIBs)最具前景的正极材料之一。然而,这些材料存在一些缺点,例如由于循环过程中不可逆的氧释放和结构恶化,导致容量衰减、初始库仑效率(ICE)低、电压衰减和倍率性能差。在此,我们提出一种简便的磷酸三苯酯(TPP)表面处理方法,以在LLOs上创建一种包含氧空位、LiPO和碳的集成表面结构。当用于LIBs时,经处理的LLOs在200次循环后,在1C下的初始库仑效率(ICE)提高到83.6%,容量保持率为84.2%。研究表明,经处理的LLOs性能增强可归因于集成表面中各组分的协同作用,例如氧空位和LiPO能够抑制氧的析出并加速锂离子的传输,而碳层可以抑制不良的界面副反应并减少过渡金属的溶解。此外,电化学阻抗谱(EIS)和恒电流间歇滴定技术(GITT)证明了经处理的LLOs正极的动力学性能增强,非原位X射线衍射仪显示在电池反应过程中TPP处理的LLOs的结构转变受到抑制。本研究为在LLOs上构建集成表面结构以实现LIBs中的高能正极材料提供了一种有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验