United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
Int J Food Microbiol. 2023 Apr 16;391-393:110158. doi: 10.1016/j.ijfoodmicro.2023.110158. Epub 2023 Feb 27.
Salmonella is commonly found on broiler chickens during processing. This study investigates the Salmonella detection method that reduces the necessary time for confirmation, by collecting surface-enhanced Raman spectroscopy (SERS) spectra from bacteria colonies, applied to a substrate of biopolymer encapsulated AgNO nanoparticles. Chicken rinses containing Salmonella Typhimurium (ST) were analyzed by SERS and compared to traditional plating and PCR analyses. SERS spectra from confirmed ST and non-Salmonella colonies appear similar in spectra composition, but with different peak intensities. t-Test on the peak intensities showed that ST and non-Salmonella colonies were significantly different (α = 0.0045) at 5 peaks, 692 cm, 718 cm, 791 cm, 859 cm, and 1018 cm. A support vector machine (SVM) classification algorithm was able to separate ST and non-Salmonella samples with an overall classification accuracy of 96.7 %.
在加工过程中,肉鸡中通常会发现沙门氏菌。本研究通过收集应用于生物聚合物封装的 AgNO 纳米粒子基底的细菌菌落的表面增强拉曼光谱(SERS)光谱,研究了一种可减少确认所需时间的沙门氏菌检测方法。通过 SERS 对含有肠炎沙门氏菌(ST)的鸡冲洗物进行了分析,并与传统的平板和 PCR 分析进行了比较。确认的 ST 和非沙门氏菌菌落的 SERS 光谱在光谱组成上相似,但峰强度不同。在 5 个峰、692cm、718cm、791cm、859cm 和 1018cm 处,对峰强度进行的 t 检验表明,ST 和非沙门氏菌菌落有显著差异(α=0.0045)。支持向量机(SVM)分类算法能够分离 ST 和非沙门氏菌样本,总体分类准确率为 96.7%。