School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
Small. 2023 Jun;19(23):e2207360. doi: 10.1002/smll.202207360. Epub 2023 Mar 3.
Nature provides a successful evolutionary direction for single-celled organisms to solve complex problems and complete survival tasks - pseudopodium. Amoeba, a unicellular protozoan, can produce temporary pseudopods in any direction by controlling the directional flow of protoplasm to perform important life activities such as environmental sensing, motility, predation, and excretion. However, creating robotic systems with pseudopodia to emulate environmental adaptability and tasking capabilities of natural amoeba or amoeboid cells remains challenging. Here, this work presents a strategy that uses alternating magnetic fields to reconfigure magnetic droplet into Amoeba-like microrobot, and the mechanisms of pseudopodia generation and locomotion are analyzed. By simply adjusting the field direction, microrobots switch in monopodia, bipodia, and locomotion modes, performing all pseudopod operations such as active contraction, extension, bending, and amoeboid movement. The pseudopodia endow droplet robots with excellent maneuverability to adapt to environmental variations, including spanning 3D terrains and swimming in bulk liquids. Inspired by the "Venom," the phagocytosis and parasitic behaviors have also been investigated. Parasitic droplets inherit all the capabilities of amoeboid robot, expanding their applicable scenarios such as reagent analysis, microchemical reactions, calculi removal, and drug-mediated thrombolysis. This microrobot may provide fundamental understanding of single-celled livings, and potential applications in biotechnology and biomedicine.
自然界为单细胞生物提供了一个成功的进化方向,以解决复杂问题并完成生存任务——伪足。变形虫是一种单细胞原生动物,通过控制细胞质的定向流动,可以在任何方向上产生临时伪足,从而执行环境感应、运动、捕食和排泄等重要生命活动。然而,创造具有伪足的机器人系统来模拟自然变形虫或变形细胞的环境适应性和任务能力仍然具有挑战性。在这里,这项工作提出了一种使用交变磁场将磁性液滴重新配置为变形虫样微机器人的策略,并分析了伪足生成和运动的机制。通过简单地调整磁场方向,微机器人可以在单足、双足和运动模式之间切换,执行所有的伪足操作,如主动收缩、伸展、弯曲和变形虫运动。伪足赋予液滴机器人卓越的机动性,以适应环境变化,包括跨越 3D 地形和在散装液体中游泳。受“毒液”启发,还研究了吞噬和寄生行为。寄生液滴继承了变形虫机器人的所有能力,扩展了它们的应用场景,如试剂分析、微化学反应、结石清除和药物介导的溶栓。这种微机器人可能为单细胞生物的生命提供基本的理解,并在生物技术和生物医学中有潜在的应用。