具有分裂和胞吐能力的磁性细胞模拟液滴微机器人

Magnetic Cell-Mimetic Droplet Microrobots with Division and Exocytosis Capabilities.

作者信息

Yu Shimin, Zhang Weiwei, Feng Yongzhi, Zhang Xiang, Li Chuanhua, Shi Shengjun, Wang Haocheng, Li Tianlong

机构信息

College of Engineering, Ocean University of China, Qingdao 266100, China.

School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China.

出版信息

Research (Wash D C). 2025 Jun 3;8:0730. doi: 10.34133/research.0730. eCollection 2025.

Abstract

The first challenge in building a living robotic system inspired by life evolution is how to replicate the original form of life-the cell. However, current microrobots mimic cell motion control but fail to replicate the functional biological activities of cellular systems. Here, we propose a strategy that programs microparticle swarms encapsulated in droplets at an air/liquid interface to create cell-mimetic droplet microrobots with vitality by employing alternating magnetic fields. Through the design of algorithms and spontaneous interface waves, our collective system embodies reversible transitions between gas, chain, array, and disk-like collective modes, and emulates various complex activities of living cells in nature, including division and exocytosis. Based on these 2 capabilities learned from living cells, the cell-mimetic microrobots navigate the bile duct to the gallbladder under the guidance and control of magnetic fields, completing the drug release task. This cell-mimetic microrobots may provide a fundamental understanding of cellular life and pave the way for the construction of artificial living systems. Furthermore, they hold substantial potential for medical and environmental applications.

摘要

构建受生命进化启发的活体机器人系统面临的首要挑战是如何复制生命的原始形式——细胞。然而,当前的微型机器人模仿细胞运动控制,但未能复制细胞系统的功能性生物活动。在此,我们提出一种策略,即通过交变磁场对封装在气/液界面液滴中的微粒群进行编程,以创建具有活力的类细胞液滴微型机器人。通过算法设计和自发界面波,我们的集体系统体现了气体、链状、阵列状和盘状集体模式之间的可逆转变,并模拟了自然界中活细胞的各种复杂活动,包括分裂和胞吐作用。基于从活细胞中汲取的这两种能力,类细胞微型机器人在磁场的引导和控制下,沿着胆管导航至胆囊,完成药物释放任务。这种类细胞微型机器人可能为细胞生命提供基本理解,并为人工生命系统的构建铺平道路。此外,它们在医学和环境应用方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d02f/12130622/54e4880a027a/research.0730.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索