Suppr超能文献

血清蛋白质组学鉴定与特发性肺纤维化发病机制相关的生物标志物。

Serum Proteomics Identifies Biomarkers Associated With the Pathogenesis of Idiopathic Pulmonary Fibrosis.

机构信息

State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Sciences, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.

Henan Provincial Chest Hospital, Zhengzhou, Henan, China.

出版信息

Mol Cell Proteomics. 2023 Apr;22(4):100524. doi: 10.1016/j.mcpro.2023.100524. Epub 2023 Mar 3.

Abstract

The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by data-independent acquisition using MS. Differentiated proteins in sera distinguished patients with IPF into three subgroups in signal pathways and overall survival. Aging-associated signatures by weighted gene correlation network analysis coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. Expression of LDHA and CCT6A, which was associated with glucose metabolic reprogramming, was correlated with high serum lactic acid content in patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished patients with IPF from healthy individuals with an area under the curve of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables an understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.

摘要

特发性肺纤维化 (IPF) 的异质性限制了其诊断和治疗。目前,IPF 的病理生理特征与血清蛋白质特征之间的关联尚不清楚。本研究通过 MS 数据非依赖性采集的蛋白质组数据集分析了与 IPF 临床参数相关的特定蛋白质和模式。在信号通路和整体存活率方面,区分血清中特发性肺纤维化患者的差异蛋白将患者分为三个亚组。通过加权基因相关网络分析得出的与衰老相关的特征恰好提供了明确而直接的证据,即衰老本身是 IPF 的一个关键危险因素,而不仅仅是一个单一的生物标志物。与葡萄糖代谢重编程相关的 LDHA 和 CCT6A 的表达与 IPF 患者血清中乳酸含量升高有关。跨模型分析和机器学习表明,组合生物标志物能够准确地区分特发性肺纤维化患者和健康个体,曲线下面积为 0.848(95%置信区间= 0.684-0.941),并通过另一个队列和 ELISA 验证。该血清蛋白质组图谱提供了严格的证据,使人们能够了解 IPF 的异质性和蛋白质改变,这有助于进行诊断和治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b0/10113895/fcab5beb06f3/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验