Suppr超能文献

高速原子力显微镜研究 ESCRT-III 膜重塑蛋白的结构与动力学

Structure and dynamics of ESCRT-III membrane remodeling proteins by high-speed atomic force microscopy.

机构信息

Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, New York, USA.

Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA.

出版信息

J Biol Chem. 2023 Apr;299(4):104575. doi: 10.1016/j.jbc.2023.104575. Epub 2023 Mar 2.

Abstract

Endosomal sorting complex required for transport (ESCRT) proteins assemble on the cytoplasmic leaflet of membranes and remodel them. ESCRT is involved in biological processes where membranes are bent away from the cytosol, constricted, and finally severed, such as in multivesicular body formation (in the endosomal pathway for protein sorting) or abscission during cell division. The ESCRT system is hijacked by enveloped viruses to allow buds of nascent virions to be constricted, severed, and released. ESCRT-III proteins, the most downstream components of the ESCRT system, are monomeric and cytosolic in their autoinhibited conformation. They share a common architecture, a four-helix bundle with a fifth helix that interacts with this bundle to prevent polymerizing. Upon binding to negatively charged membranes, the ESCRT-III components adopt an activated state that allows them to polymerize into filaments and spirals and to interact with the AAA-ATPase Vps4 for polymer remodeling. ESCRT-III has been studied with electron microscopy and fluorescence microscopy; these methods provided invaluable information about ESCRT assembly structures or their dynamics, respectively, but neither approach provides detailed insights into both aspects simultaneously. High-speed atomic force microscopy (HS-AFM) has overcome this shortcoming, providing movies at high spatiotemporal resolution of biomolecular processes, significantly increasing our understanding of ESCRT-III structure and dynamics. Here, we review the contributions of HS-AFM in the analysis of ESCRT-III, focusing on recent developments of nonplanar and deformable HS-AFM supports. We divide the HS-AFM observations into four sequential steps in the ESCRT-III lifecycle: (1) polymerization, (2) morphology, (3) dynamics, and (4) depolymerization.

摘要

内体分选复合物运输所需蛋白(ESCRT)在膜的细胞质小叶上组装并重塑它们。ESCRT 参与了膜从细胞质弯曲、收缩、最终断裂的生物学过程,如多泡体形成(在蛋白质分选的内体途径中)或细胞分裂时的分离。包膜病毒劫持了 ESCRT 系统,允许新生病毒芽的收缩、断裂和释放。ESCRT-III 蛋白是 ESCRT 系统的最下游成分,在其自身抑制构象中是单体和细胞质的。它们具有共同的结构,一个四螺旋束和一个与该束相互作用以防止聚合的第五螺旋。在结合带负电荷的膜后,ESCRT-III 组件采用激活状态,允许它们聚合成长丝和螺旋,并与 AAA-ATPase Vps4 相互作用以进行聚合物重塑。ESCRT-III 已经通过电子显微镜和荧光显微镜进行了研究;这两种方法分别提供了关于 ESCRT 组装结构或其动力学的宝贵信息,但都不能同时提供关于这两个方面的详细信息。高速原子力显微镜(HS-AFM)克服了这一缺点,以高时空分辨率提供了生物分子过程的电影,大大提高了我们对 ESCRT-III 结构和动力学的理解。在这里,我们回顾了 HS-AFM 在 ESCRT-III 分析中的贡献,重点介绍了非平面和可变形 HS-AFM 支撑物的最新进展。我们将 HS-AFM 观察结果分为 ESCRT-III 生命周期中的四个连续步骤:(1)聚合,(2)形态,(3)动力学,和(4)解聚。

相似文献

3
The role of VPS4 in ESCRT-III polymer remodeling.VPS4 在 ESCRT-III 聚合物重塑中的作用。
Biochem Soc Trans. 2019 Feb 28;47(1):441-448. doi: 10.1042/BST20180026. Epub 2019 Feb 19.
5
Snf7 spirals sense and alter membrane curvature.Snf7 螺旋感知并改变膜曲率。
Nat Commun. 2022 Apr 21;13(1):2174. doi: 10.1038/s41467-022-29850-z.
6
7
VPS4 triggers constriction and cleavage of ESCRT-III helical filaments.VPS4 触发 ESCRT-III 螺旋丝的收缩和断裂。
Sci Adv. 2019 Apr 10;5(4):eaau7198. doi: 10.1126/sciadv.aau7198. eCollection 2019 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验