Suppr超能文献

利用大数据构建有效的干预模型以预防肥胖流行。

Building effective intervention models utilizing big data to prevent the obesity epidemic.

作者信息

Tu Brittany, Patel Radha, Pitalua Mario, Khan Hafiz, Gittner Lisaann S

机构信息

School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

出版信息

Obes Res Clin Pract. 2023 Mar-Apr;17(2):108-115. doi: 10.1016/j.orcp.2023.02.005. Epub 2023 Mar 2.

Abstract

INTRODUCTION

The exposome consists of factors an individual is exposed to across the life course. The exposome is dynamic, meaning the factors are constantly changing, affecting each other and individuals in different ways. Our exposome dataset includes social determinants of health as well as policy, climate, environment, and economic factors that could impact obesity development. The objective was to translate spatial exposure to these factors with the presence of obesity into actionable population-based constructs that could be further explored.

METHODS

Our dataset was constructed from a combination of public-use datasets and the Center of Disease Control's Compressed Mortality File. Spatial Statistics using Queens First Order Analysis was performed to identify hot- and cold-spots of obesity prevalence; followed by Graph Analysis, Relational Analysis, and Exploratory Factor Analysis to model the multifactorial spatial connections.

RESULTS

Areas of high and low presence of obesity had different factors associated with obesity. Factors associated with obesity in areas of high obesity propensity were: poverty / unemployment; workload, comorbid conditions (diabetes, CVD) and physical activity. Conversely, factors associated in areas where obesity was rare were: smoking, lower education, poorer mental health, lower elevations, and heat.

DISCUSSION

The spatial methods described within the paper are scalable to large numbers of variables without issues of multiple comparisons lowering resolution. These types of spatial structural methods provide insights into novel variable associations or factor interactions that can then be studied further at the population or policy levels.

摘要

引言

暴露组由个体在其生命历程中所接触到的各种因素组成。暴露组是动态的,这意味着这些因素在不断变化,以不同方式相互影响并作用于个体。我们的暴露组数据集包括健康的社会决定因素以及可能影响肥胖发展的政策、气候、环境和经济因素。目标是将存在肥胖情况下这些因素的空间暴露转化为可进一步探索的基于人群的可操作结构。

方法

我们的数据集由公共使用数据集和疾病控制中心的压缩死亡率文件组合而成。使用皇后区一阶分析进行空间统计,以确定肥胖患病率的热点和冷点;随后进行图分析、关系分析和探索性因素分析,以模拟多因素空间联系。

结果

肥胖率高和低的地区与肥胖相关的因素不同。肥胖倾向高的地区与肥胖相关的因素有:贫困/失业;工作量、合并症(糖尿病、心血管疾病)和身体活动。相反,肥胖罕见地区的相关因素有:吸烟、低教育水平、较差的心理健康状况、较低海拔和高温。

讨论

本文中描述的空间方法可扩展到大量变量,不存在多重比较降低分辨率的问题。这些类型的空间结构方法为新的变量关联或因素相互作用提供了见解,然后可在人群或政策层面进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验