Miller Stephen A
The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, FL, United States.
Front Chem. 2023 Feb 16;11:1123322. doi: 10.3389/fchem.2023.1123322. eCollection 2023.
Oxygen is the most abundant terrestrial element and is found in a variety of materials, but still wanting is a universal theory for the stability and structural organization it confers. Herein, a computational molecular orbital analysis elucidates the structure, stability, and cooperative bonding of α-quartz silica (SiO). Despite geminal oxygen-oxygen distances of 2.61-2.64 Å, silica model complexes exhibit anomalously large O-O bond orders (Mulliken, Wiberg, Mayer) that increase with increasing cluster size-as the silicon-oxygen bond orders decrease. The average O-O bond order in bulk silica computes to 0.47 while that for Si-O computes to 0.64. Thereby, for each silicate tetrahedron, the six O-O bonds employ 52% (5.61 electrons) of the valence electrons, while the four Si-O bonds employ 48% (5.12 electrons), rendering the O-O bond the most abundant bond in the Earth's crust. The isodesmic deconstruction of silica clusters reveals cooperative O-O bonding with an O-O bond dissociation energy of 4.4 kcal/mol. These unorthodox, long covalent bonds are rationalized by an excess of O 2-O 2 bonding versus anti-bonding interactions within the valence molecular orbitals of the SiO unit (48 vs. 24) and the SiO ring (90 vs. 18). Within quartz silica, oxygen 2 orbitals contort and organize to avoid molecular orbital nodes, inducing the chirality of silica and resulting in Möbius aromatic SiO rings, the most prevalent form of aromaticity on Earth. This long covalent bond theory (LCBT) relocates one-third of Earth's valence electrons and indicates that non-canonical O-O bonds play a subtle, but crucial role in the structure and stability of Earth's most abundant material.
氧是地球上含量最丰富的元素,存在于多种物质中,但对于它所赋予的稳定性和结构组织,仍缺乏一个通用理论。在此,通过计算分子轨道分析阐明了α - 石英二氧化硅(SiO)的结构、稳定性和协同键合。尽管双氧原子间距为2.61 - 2.64 Å,但二氧化硅模型配合物显示出异常大的O - O键级(穆利肯、维伯格、迈耶),且随着团簇尺寸的增加而增大,同时硅 - 氧键级减小。块状二氧化硅中的平均O - O键级计算为0.47,而Si - O键级为0.64。因此,对于每个硅酸盐四面体,六个O - O键利用了52%(5.61个电子)的价电子,而四个Si - O键利用了48%(5.12个电子),这使得O - O键成为地壳中最丰富的键。二氧化硅团簇的等键解构揭示了协同的O - O键合,其O - O键解离能为4.4 kcal/mol。这些非传统的长共价键可通过SiO单元(48对24)和SiO环(90对18)的价分子轨道内O₂ - O₂键合与反键相互作用的过量来解释。在石英二氧化硅中,氧2轨道扭曲并排列以避免分子轨道节点,从而诱导二氧化硅的手性,并产生莫比乌斯芳香SiO环,这是地球上最普遍的芳香性形式。这种长共价键理论(LCBT)重新定位了地球三分之一的价电子,并表明非标准的O - O键在地球最丰富物质的结构和稳定性中起着微妙但关键的作用。