Suppr超能文献

将粪便与昆虫物候学联系起来以优化年度森林落叶估计。

Linking frass and insect phenology to optimize annual forest defoliation estimation.

作者信息

Thapa B, Wolter P T, Sturtevant B R, Foster J R, Townsend P A

机构信息

Department of Natural Resource Ecology & Management, Iowa State University, Ames, IA 50011, USA.

Institute for Applied Ecosystem Studies, Northern Research Station, USDA Forest Service, Rhinelander, WI 54501, USA.

出版信息

MethodsX. 2023 Feb 15;10:102075. doi: 10.1016/j.mex.2023.102075. eCollection 2023.

Abstract

It is often logistically impractical to measure forest defoliation events in the field due to seasonal variability in larval feeding phenology (e.g., start, peak, and end) in any given year. As such, field data collections are either incomplete or at coarse temporal resolutions, both of which result in inaccurate estimation of annual defoliation (frass or foliage loss). Using F. and L., we present a novel approach that leverages a weather-driven insect simulation model (BioSIM) and defoliation field data. Our approach includes optimization of a weighting parameter (w) for each instar and imputation of defoliation. Results show a negative skew in this weighting parameter, where the second to last instar in a season exhibits the maximum consumption and provides better estimates of annual frass and foliage biomass loss where sampling data gaps exist. Respective cross-validation RMSE (and normalized RMSE) results for and are 77.53 kg·ha (0.16) and 38.24 kg·ha (0.02) for frass and 74.85 kg·ha (0.10) and 47.77 kg·ha (0.02) for foliage biomass loss imputation. Our method provides better estimates for ecosystem studies that leverage remote sensing data to scale defoliation rates from the field to broader landscapes and regions.•Utilize fine temporal resolution insect life cycle data derived from weather-driven insect simulation model (BioSIM) to bridge critical gaps in coarse temporal resolution defoliation field data.•Fitting distributions to optimize the instar weighting parameter (w) and impute frass and foliage biomass loss based on a cumulative density function (CDF).•Enables accurate estimation of annual defoliation impacts on ecosystems across multiple insect taxa that exhibit distinct but seasonally variable feeding phenology.

摘要

由于任何给定年份幼虫取食物候(如开始、高峰和结束)的季节性变化,在野外测量森林落叶事件在后勤方面通常不切实际。因此,野外数据收集要么不完整,要么时间分辨率粗糙,这两者都会导致对年度落叶(粪便或树叶损失)的估计不准确。我们使用F.和L.,提出了一种新颖的方法,该方法利用了一个由天气驱动的昆虫模拟模型(BioSIM)和落叶野外数据。我们的方法包括为每个龄期优化一个加权参数(w)以及估算落叶量。结果表明,该加权参数呈负偏态,其中一个季节中倒数第二龄期的取食量最大,并且在存在采样数据缺口的情况下,能更好地估计年度粪便和树叶生物量损失。粪便量的交叉验证RMSE(和归一化RMSE)结果分别为77.53 kg·ha(0.16),树叶生物量损失估算的交叉验证RMSE(和归一化RMSE)结果分别为74.85 kg·ha(0.10);粪便量的交叉验证归一化RMSE结果为0.02,树叶生物量损失估算的交叉验证归一化RMSE结果为0.02。我们的方法为生态系统研究提供了更好的估计,这些研究利用遥感数据将野外的落叶率扩展到更广阔的景观和区域。

•利用从天气驱动的昆虫模拟模型(BioSIM)获得的精细时间分辨率昆虫生命周期数据,弥合粗糙时间分辨率落叶野外数据中的关键缺口。

•拟合分布以优化龄期加权参数(w),并基于累积密度函数(CDF)估算粪便和树叶生物量损失。

•能够准确估计年度落叶对多个昆虫类群生态系统的影响,这些昆虫类群表现出不同但季节性变化的取食物候。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fb6/9978851/31b20e41e022/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验