Suppr超能文献

卫星遥感与最大熵模型的集成,用于改进森林害虫的检测和管理。

Integration of satellite remote sensing and MaxEnt modeling for improved detection and management of forest pests.

机构信息

Department of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.

出版信息

Environ Monit Assess. 2024 Jun 14;196(7):616. doi: 10.1007/s10661-024-12792-y.

Abstract

Forest pests pose a major threat to ecosystem services worldwide, requiring effective monitoring and management strategies. Recently, satellite remote sensing has emerged as a valuable tool to detect defoliation caused by these pests. Lymantria dispar, a major forest pest native to Japan, Siberia, and Europe, as well as introduced regions in North America, is of particular concern. In this study, we used Sentinel-2 satellite imagery to estimate the defoliation area and predict the distribution of L. dispar in Toyama Prefecture, central Japan. The primary aim was to understand the spatial distribution of L. dispar. The normalized difference vegetation index (NDVI) difference analysis estimated a defoliation area of 7.89 km in Toyama Prefecture for the year 2022. MaxEnt modeling, using defoliation map as occurrence data, identified the deciduous forests between approximately 35° and 50° at elevations of 400 m and 700 m as highly suitable for L. dispar. This predicted suitability was also high for larval locations but low for egg mass locations, likely due to differences in larval habitats and ovipositing sites. This study is the first attempt to utilize NDVI-based estimates as a proxy for MaxEnt. Our results showed higher prediction accuracy than a previous study based on the occurrence records including larvae, adults, and egg masses, indicating better discrimination of the distribution of L. dispar defoliation. Therefore, our approach to integrating satellite data and species distribution models can potentially enhance the assessment of areas affected by pests for effective forest management.

摘要

森林害虫对全球生态系统服务构成重大威胁,需要采取有效的监测和管理策略。最近,卫星遥感已成为一种检测这些害虫造成的落叶的有价值的工具。舞毒蛾是一种主要的森林害虫,原产于日本、西伯利亚和欧洲,以及北美的引入地区,尤其令人关注。在这项研究中,我们使用 Sentinel-2 卫星图像来估计日本富山县的舞毒蛾的落叶面积并预测其分布。主要目的是了解舞毒蛾的空间分布。归一化差异植被指数(NDVI)差异分析估计 2022 年富山县的落叶面积为 7.89 平方公里。使用基于落叶的地图作为出现数据的最大熵模型确定了海拔 400 米和 700 米之间的落叶林在大约 35°和 50°之间高度适合舞毒蛾。对幼虫位置的预测适宜度也很高,但对卵块位置的预测适宜度较低,这可能是由于幼虫栖息地和产卵地点的差异所致。这是首次尝试使用基于 NDVI 的估计作为 MaxEnt 的替代方法。我们的结果表明,与基于包括幼虫、成虫和卵块在内的出现记录的先前研究相比,预测精度更高,表明对舞毒蛾落叶分布的区分能力更强。因此,我们整合卫星数据和物种分布模型的方法有可能增强对受虫害影响地区的评估,从而实现有效的森林管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验