Wang Sen, Li Linmei, Zheng Shuanghao, Das Pratteek, Shi Xiaoyu, Ma Jiaxin, Liu Yu, Zhu Yuanyuan, Lu Yao, Wu Zhong-Shuai, Cheng Hui-Ming
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Natl Sci Rev. 2022 Nov 26;10(3):nwac271. doi: 10.1093/nsr/nwac271. eCollection 2023 Mar.
Monolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance and cell-number density are important for miniaturized electronics to empower the Internet of Things. However, fabrication of customizable MIMSCs in an extremely small space remains a huge challenge considering key factors such as materials selection, electrolyte confinement, microfabrication and device-performance uniformity. Here, we develop a universal and large-throughput microfabrication strategy to address all these issues by combining multistep lithographic patterning, spray printing of MXene microelectrodes and controllable 3D printing of gel electrolytes. We achieve the monolithic integration of electrochemically isolated micro-supercapacitors in close proximity by leveraging high-resolution micropatterning techniques for microelectrode deposition and 3D printing for precise electrolyte deposition. Notably, the MIMSCs obtained demonstrate a high areal-number density of 28 cells cm (340 cells on 3.5 × 3.5 cm), a record areal output voltage of 75.6 V cm, an acceptable systemic volumetric energy density of 9.8 mWh cm and an unprecedentedly high capacitance retention of 92% after 4000 cycles at an extremely high output voltage of 162 V. This work paves the way for monolithic integrated and microscopic energy-storage assemblies for powering future microelectronics.
具有高系统性能和单元数密度的单片集成微型超级电容器(MIMSC)对于实现物联网的小型化电子产品至关重要。然而,考虑到材料选择、电解质限制、微制造和器件性能均匀性等关键因素,在极小空间内制造可定制的MIMSC仍然是一个巨大的挑战。在此,我们开发了一种通用且高通量的微制造策略,通过结合多步光刻图案化、MXene微电极的喷涂印刷以及凝胶电解质的可控3D打印来解决所有这些问题。我们利用用于微电极沉积的高分辨率微图案化技术和用于精确电解质沉积的3D打印技术,实现了紧密相邻的电化学隔离微型超级电容器的单片集成。值得注意的是,所获得的MIMSC具有28个单元/平方厘米的高面数密度(在3.5×3.5厘米上有340个单元)、75.6伏/厘米的创纪录面输出电压、9.8毫瓦时/立方厘米的可接受系统体积能量密度以及在162伏的极高输出电压下经过4000次循环后前所未有的92%的高电容保持率。这项工作为为未来微电子设备供电的单片集成和微观储能组件铺平了道路。