Suppr超能文献

使用超声图像对各种疾病进行计算机辅助诊断

Computer-Aided Diagnosis of Various Diseases Using Ultrasonography Images.

作者信息

Mohit Kumar, Gupta Rajeev, Kumar Basant

机构信息

Electronics and Communication Engineering Department 1MNNITA, Prayagraj.

出版信息

Curr Med Imaging. 2023 Mar 6. doi: 10.2174/1573405619666230306101012.

Abstract

This paper is an exhaustive survey of computer-aided diagnosis (CAD) system-based automatic detection of several diseases from ultrasound images. CAD plays a vital role in the automatic and early detection of diseases. Health monitoring, medical database management, and picture archiving systems became very feasible with CAD, assisting radiologists in making decisions over any imaging modality. Imaging modalities mainly rely on machine learning and deep learning algorithms for early and accurate disease detection. CAD approaches are described in this paper in terms of their significant tools; digital image processing (DIP), machine learning (ML), and deep learning (DL). Ultrasonography (USG) already has many advantages over other imaging modalities; therefore, CAD analysis of USG assists radiologists in studying it more clearly, leading to USG application over various body parts. So, in this paper, we have included a review of those major diseases whose detection supports "ML algorithm" based diagnosis from USG images. ML algorithm follows feature extraction, selection, and classification in the required class. The literature survey of these diseases is grouped into the carotid region, transabdominal & pelvic region, musculoskeletal region, and thyroid region. These regions also differ in the types of transducers employed for scanning. Based on the literature survey, we have concluded that texture-based extracted features passed to support vector machine (SVM) classifier results in good classification accuracy. However, the emerging deep learning-based disease classification trend signifies more preciseness and automation for feature extraction and classification. Still, classification accuracy depends on the number of images used for training the model. This motivated us to highlight some of the significant shortcomings of automated disease diagnosis techniques. Research challenges in CAD-based automatic diagnosis system design and limitations in imaging through USG modality are mentioned as separate topics in this paper, indicating future scope or improvement in this field. The success rate of machine learning approaches in USG-based automatic disease detection motivated this review paper to describe different parameters behind machine learning and deep learning algorithms towards improving USG diagnostic performance.

摘要

本文是对基于计算机辅助诊断(CAD)系统从超声图像中自动检测多种疾病的详尽综述。CAD在疾病的自动早期检测中起着至关重要的作用。借助CAD,健康监测、医学数据库管理和图像存档系统变得非常可行,有助于放射科医生对任何成像方式做出决策。成像方式主要依靠机器学习和深度学习算法进行早期准确的疾病检测。本文从其重要工具——数字图像处理(DIP)、机器学习(ML)和深度学习(DL)方面描述了CAD方法。超声检查(USG)相较于其他成像方式已经具有许多优势;因此,对USG的CAD分析有助于放射科医生更清晰地研究它,从而使USG在身体各个部位得到应用。所以,在本文中,我们对那些其检测支持基于“ML算法”对USG图像进行诊断的主要疾病进行了综述。ML算法在所需类别中进行特征提取、选择和分类。对这些疾病的文献综述分为颈动脉区域、经腹及盆腔区域、肌肉骨骼区域和甲状腺区域。这些区域在用于扫描的换能器类型上也有所不同。基于文献综述,我们得出结论,传递给支持向量机(SVM)分类器的基于纹理提取的特征可带来良好的分类准确率。然而,新兴的基于深度学习的疾病分类趋势意味着在特征提取和分类方面更加精确和自动化。不过,分类准确率取决于用于训练模型的图像数量。这促使我们强调自动疾病诊断技术的一些重大缺点。基于CAD的自动诊断系统设计中的研究挑战以及通过USG方式成像的局限性在本文中作为单独主题提及,指出了该领域未来的发展范围或改进方向。基于USG的自动疾病检测中机器学习方法的成功率促使这篇综述文章描述机器学习和深度学习算法背后的不同参数,以提高USG的诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验