Suppr超能文献

CN 与 CHO 低温反应的实验和理论研究及其对星际环境的影响。

Experimental and theoretical study of the low-temperature kinetics of the reaction of CN with CHO and implications for interstellar environments.

机构信息

School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.

Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, UK.

出版信息

Phys Chem Chem Phys. 2023 Mar 15;25(11):7719-7733. doi: 10.1039/d2cp05043a.

Abstract

Rate coefficients for the reaction of CN with CHO were measured for the first time below room temperature in the range 32-103 K using a pulsed Laval nozzle apparatus together with the Pulsed Laser Photolysis-Laser-Induced Fluorescence technique. The rate coefficients exhibited a strong negative temperature dependence, reaching (4.62 ± 0.84) × 10 cm molecule s at 32 K, and no pressure dependence was observed at 70 K. The potential energy surface (PES) of the CN + CHO reaction was calculated at the CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ level of theory, with the lowest energy channel to reaction characterized by the formation of a weakly-bound van der Waals complex, bound by 13.3 kJ mol, prior to two transition states with energies of -0.62 and 3.97 kJ mol, leading to the products HCN + HCO or HNC + HCO, respectively. For the formation of formyl cyanide, HCOCN, a large activation barrier of 32.9 kJ mol was calculated. Reaction rate theory calculations were performed with the MESMER (Master Equation Solver for Multi Energy well Reactions) package on this PES to calculate rate coefficients. While this description provided good agreement with the low-temperature rate coefficients, it was not capable of describing the high-temperature experimental rate coefficients from the literature. However, increasing the energies and imaginary frequencies of both transition states allowed MESMER simulations of the rate coefficients to be in good agreement with data spanning 32-769 K. The mechanism for the reaction is the formation of a weakly-bound complex followed by quantum mechanical tunnelling through the small barrier to form HCN + HCO products. MESMER calculations showed that channel generating HNC is not important. MESMER simulated the rate coefficients from 4-1000 K which were used to recommend best-fit modified Arrhenius expressions for use in astrochemical modelling. The UMIST Rate12 (UDfa) model yielded no significant changes in the abundances of HCN, HNC, and HCO for a variety of environments upon inclusion of rate coefficients reported here. The main implication from this study is that the title reaction is not a primary formation route to the interstellar molecule formyl cyanide, HCOCN, as currently implemented in the KIDA astrochemical model.

摘要

首次在 32-103 K 温度范围内使用脉冲拉瓦尔喷嘴装置结合脉冲激光光解-激光诱导荧光技术测量了 CN 与 CHO 的反应速率系数。速率系数表现出强烈的负温度依赖性,在 32 K 时达到(4.62 ± 0.84)×10cm 分子 s,在 70 K 时没有观察到压力依赖性。在 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ 理论水平上计算了 CN + CHO 反应的势能面(PES),最低能量通道以形成弱束缚范德华复合物为特征,由 13.3 kJ mol 结合,然后是两个能量分别为-0.62 和 3.97 kJ mol 的过渡态,分别导致 HCN + HCO 或 HNC + HCO 的产物。对于甲酰氰化物 HCOCN 的形成,计算出 32.9 kJ mol 的大活化能垒。使用 MESMER(多能阱反应主方程求解器)程序包在该 PES 上进行反应速率理论计算,以计算速率系数。虽然这种描述与低温速率系数吻合良好,但不能描述文献中来自高温的实验速率系数。然而,增加两个过渡态的能量和虚频,使得 MESMER 模拟的速率系数与 32-769 K 范围内的数据吻合良好。反应的机制是形成弱束缚复合物,然后通过小势垒进行量子力学隧穿,形成 HCN + HCO 产物。MESMER 计算表明,生成 HNC 的通道并不重要。MESMER 模拟了 4-1000 K 的速率系数,并用它们推荐了用于天体化学建模的最佳拟合修正 Arrhenius 表达式。在包含这里报道的速率系数后,UMIST Rate12 (UDfa) 模型对各种环境中的 HCN、HNC 和 HCO 的丰度没有显著变化。这项研究的主要意义是,目前在 KIDA 天体化学模型中,该标题反应不是星际分子甲酰氰化物 HCOCN 的主要形成途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验