Suppr超能文献

HCO + OH → HCO + HO反应的全维势能面与低温动力学

Full dimensional potential energy surface and low temperature dynamics of the HCO + OH → HCO + HO reaction.

作者信息

Zanchet Alexandre, Del Mazo Pablo, Aguado Alfredo, Roncero Octavio, Jiménez Elena, Canosa André, Agúndez Marcelino, Cernicharo José

机构信息

Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, c/Serrano 123, 28006 Madrid, Spain.

出版信息

Phys Chem Chem Phys. 2018 Feb 21;20(8):5415-5426. doi: 10.1039/c7cp05307j.

Abstract

A new method is proposed to analytically represent the potential energy surface of reactions involving polyatomic molecules capable of accurately describing long-range interactions and saddle points, needed to describe low-temperature collisions. It is based on two terms, a reactive force field term and a many-body term. The reactive force field term accurately describes the fragments, long-range interactions among them and the saddle points for reactions. The many-body term increases the desired accuracy everywhere else. This method has been applied to the OH + HCO → HO + HCO reaction, giving a barrier of 27.4 meV. The simulated classical rate constants with this potential are in good agreement with recent experimental results [Ocaña et al., Astrophys. J., 2017, submitted], showing an important increase at temperatures below 100 K. The reaction mechanism is analyzed in detail here, and explains the observed behavior at low energy by the formation of long-lived collision complexes, with roaming trajectories, with a capture observed for very long impact parameters, >100 a.u., determined by the long-range dipole-dipole interaction.

摘要

提出了一种新方法,用于解析表示涉及多原子分子反应的势能面,该方法能够准确描述低温碰撞所需的长程相互作用和鞍点。它基于两项,一项是反应力场项,另一项是多体项。反应力场项准确描述了碎片、它们之间的长程相互作用以及反应的鞍点。多体项在其他各处提高了所需的精度。该方法已应用于OH + HCO → HO + HCO反应,得到的势垒为27.4毫电子伏特。用此势能模拟的经典速率常数与最近的实验结果[奥卡尼亚等人,《天体物理学杂志》,2017年,已提交]吻合良好,显示出在低于100 K的温度下有显著增加。在此详细分析了反应机理,通过形成具有漫游轨迹的长寿命碰撞复合物来解释在低能量下观察到的行为,对于非常长的碰撞参数(>100原子单位)观察到捕获现象,这是由长程偶极 - 偶极相互作用决定的。

相似文献

1
Full dimensional potential energy surface and low temperature dynamics of the HCO + OH → HCO + HO reaction.
Phys Chem Chem Phys. 2018 Feb 21;20(8):5415-5426. doi: 10.1039/c7cp05307j.
2
Zero- and high-pressure mechanisms in the complex forming reactions of OH with methanol and formaldehyde at low temperatures.
ACS Earth Space Chem. 2019 Jul 18;3(7):1158-1169. doi: 10.1021/acsearthspacechem.9b00051. Epub 2019 May 14.
3
6
A new (multi-reference configuration interaction) potential energy surface for HCO and preliminary studies of roaming.
Philos Trans A Math Phys Eng Sci. 2017 Apr 28;375(2092). doi: 10.1098/rsta.2016.0194.
7
Prediction of Rate Coefficients for the HCO + OH → HCO + HO Reaction at Combustion, Atmospheric and Interstellar Medium Conditions.
J Phys Chem A. 2020 Mar 19;124(11):2309-2317. doi: 10.1021/acs.jpca.9b11690. Epub 2020 Mar 5.
9
Low temperature reaction dynamics for CHOH + OH collisions on a new full dimensional potential energy surface.
Phys Chem Chem Phys. 2018 Oct 17;20(40):25951-25958. doi: 10.1039/c8cp04970j.

引用本文的文献

1
Experimental and Theoretical Investigation of the Reaction of CH with Formaldehyde (CHO) at Very Low Temperatures and Application to Astrochemical Models.
ACS Earth Space Chem. 2024 Nov 20;8(12):2428-2441. doi: 10.1021/acsearthspacechem.4c00188. eCollection 2024 Dec 19.
3
Zero- and high-pressure mechanisms in the complex forming reactions of OH with methanol and formaldehyde at low temperatures.
ACS Earth Space Chem. 2019 Jul 18;3(7):1158-1169. doi: 10.1021/acsearthspacechem.9b00051. Epub 2019 May 14.
4
Gas phase Elemental abundances in Molecular cloudS (GEMS): I. The prototypical dark cloud TMC 1.
Astron Astrophys. 2019 May 17;624. doi: 10.1051/0004-6361/201834654. Epub 2019 Apr 19.
6
Low temperature reaction dynamics for CHOH + OH collisions on a new full dimensional potential energy surface.
Phys Chem Chem Phys. 2018 Oct 17;20(40):25951-25958. doi: 10.1039/c8cp04970j.

本文引用的文献

1
3
Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications.
J Phys Chem A. 2016 Nov 3;120(43):8488-8502. doi: 10.1021/acs.jpca.6b07140. Epub 2016 Sep 27.
4
Mode-Specific SN2 Reaction Dynamics.
J Phys Chem Lett. 2016 Sep 1;7(17):3322-7. doi: 10.1021/acs.jpclett.6b01457. Epub 2016 Aug 12.
5
Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature.
Phys Chem Chem Phys. 2016 Aug 10;18(32):22712-8. doi: 10.1039/c6cp04173f.
7
Quantum and quasi-classical calculations for the S⁺ + H₂(v,j) → SH⁺(v',j') + H reactive collisions.
Phys Chem Chem Phys. 2016 Apr 28;18(16):11391-400. doi: 10.1039/c6cp00604c.
9
Permutationally Invariant Fitting of Many-Body, Non-covalent Interactions with Application to Three-Body Methane-Water-Water.
J Chem Theory Comput. 2015 Apr 14;11(4):1631-8. doi: 10.1021/acs.jctc.5b00091. Epub 2015 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验