Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2335-2349. doi: 10.1007/s00253-023-12445-z. Epub 2023 Mar 6.
β-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 β-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (β/α) TIM-barrel-like domain, an (α/β) sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.
β-木糖苷酶在半纤维素降解的最后一步催化木低聚糖水解为木糖。黑曲霉来源的 GH3β-木糖苷酶 AnBX 对木糖苷底物具有较高的催化效率。在这项研究中,我们通过定点突变、动力学分析和 NMR 光谱相关的叠氮化物拯救反应分析,报道了 AnBX 的三维结构和催化及底物结合残基的鉴定。AnBX 的 E88A 突变体的结构在 2.5-Å 分辨率下确定,包含两个分子在不对称单位中,每个分子由三个结构域组成,即 N 端(β/α)TIM-桶状结构域、(α/β)夹层结构域和 C 端纤维连接蛋白 III 结构域。实验证实 AnBX 的 Asp288 和 Glu500 分别作为催化亲核试剂和酸碱催化剂。晶体结构显示,Trp86、Glu88 和 Cys289 与 Cys321 形成二硫键,位于-1 位。虽然 E88D 和 C289W 突变降低了对所有四种测试底物的催化效率,但用 Ala、Asp 和 Ser 替代 Trp86 增加了对糖苷底物相对于木糖苷底物的底物偏好,表明 Trp86 负责 AnBX 的木糖苷特异性。本研究获得的 AnBX 的结构和生化信息为调节木质纤维素生物质水解的酶学性质提供了宝贵的见解。关键点: • AnBX 的 Asp288 和 Glu500 分别是亲核试剂和酸碱催化剂 • Glu88 和 Cys289-Cys321 二硫键对 AnBX 的催化活性至关重要 • AnBX 中的 W86A 和 W86S 突变增加了对糖苷底物的偏好。