Suppr超能文献

基于 scRNA-seq 数据的卷积神经网络进行基因调控网络推断。

Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data.

机构信息

Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha, China.

Laboratory of Software Engineering for Complex System, National University of Defense Technology, Changsha, China.

出版信息

J Comput Biol. 2023 May;30(5):619-631. doi: 10.1089/cmb.2022.0355. Epub 2023 Mar 6.

Abstract

In recent years, with the rapid development of single-cell sequencing technology, this brings new opportunities and challenges to reconstruct gene regulatory networks. On the one hand, scRNA-seq data reveal statistical information of gene expression at single-cell resolution, which is beneficial to construct gene expression regulatory networks. On the other hand, the noise and dropout of single-cell data bring great difficulties to the analysis of scRNA-seq data, resulting in lower accuracy of gene regulatory networks reconstructed by traditional methods. In this article, we propose a novel supervised convolutional neural network (CNNSE), which can extract gene expression information from 2D co-expression matrices of gene doublets and identify interactions between genes. Our method can avoid the loss of extreme point interference by constructing a 2D co-expression matrix of gene pairs and significantly improve the regulation precision between gene pairs. And the CNNSE model is able to obtain detailed and high-level semantic information from the 2D co-expression matrix. Our method achieves satisfactory results on simulated data [accuracy (ACC): 0.712, F1: 0.724]. On two real scRNA-seq datasets, our method exhibits higher stability and accuracy in inference tasks compared with other existing gene regulatory network inference algorithms.

摘要

近年来,随着单细胞测序技术的快速发展,这为重建基因调控网络带来了新的机遇和挑战。一方面,scRNA-seq 数据揭示了单细胞分辨率下基因表达的统计信息,有利于构建基因表达调控网络。另一方面,单细胞数据的噪声和缺失给 scRNA-seq 数据的分析带来了很大的困难,导致传统方法重建的基因调控网络的准确性降低。在本文中,我们提出了一种新的有监督卷积神经网络(CNNSE),它可以从基因对的 2D 共表达矩阵中提取基因表达信息,并识别基因之间的相互作用。我们的方法通过构建基因对的 2D 共表达矩阵,可以避免极值干扰的丢失,显著提高基因对之间的调控精度。并且,CNNSE 模型能够从 2D 共表达矩阵中获取详细和高级的语义信息。我们的方法在模拟数据上取得了令人满意的结果[准确性(ACC):0.712,F1:0.724]。在两个真实的 scRNA-seq 数据集上,与其他现有的基因调控网络推断算法相比,我们的方法在推断任务中表现出更高的稳定性和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验