Suppr超能文献

从单细胞 RNA-seq 数据中计算推断网络的方法的优势和劣势分析。

Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data.

机构信息

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.

Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

G3 (Bethesda). 2023 Mar 9;13(3). doi: 10.1093/g3journal/jkad004.

Abstract

Single-cell RNA-sequencing (scRNA-seq) offers unparalleled insight into the transcriptional programs of different cellular states by measuring the transcriptome of thousands of individual cells. An emerging problem in the analysis of scRNA-seq is the inference of transcriptional gene regulatory networks and a number of methods with different learning frameworks have been developed to address this problem. Here, we present an expanded benchmarking study of eleven recent network inference methods on seven published scRNA-seq datasets in human, mouse, and yeast considering different types of gold standard networks and evaluation metrics. We evaluate methods based on their computing requirements as well as on their ability to recover the network structure. We find that, while most methods have a modest recovery of experimentally derived interactions based on global metrics such as Area Under the Precision Recall curve, methods are able to capture targets of regulators that are relevant to the system under study. Among the top performing methods that use only expression were SCENIC, PIDC, MERLIN or Correlation. Addition of prior biological knowledge and the estimation of transcription factor activities resulted in the best overall performance with the Inferelator and MERLIN methods that use prior knowledge outperforming methods that use expression alone. We found that imputation for network inference did not improve network inference accuracy and could be detrimental. Comparisons of inferred networks for comparable bulk conditions showed that the networks inferred from scRNA-seq datasets are often better or at par with the networks inferred from bulk datasets. Our analysis should be beneficial in selecting methods for network inference. At the same time, this highlights the need for improved methods and better gold standards for regulatory network inference from scRNAseq datasets.

摘要

单细胞 RNA 测序 (scRNA-seq) 通过测量数千个单个细胞的转录组,提供了对不同细胞状态转录程序的无与伦比的洞察力。scRNA-seq 分析中出现的一个新问题是推断转录基因调控网络,已经开发了许多具有不同学习框架的方法来解决这个问题。在这里,我们在人类、小鼠和酵母的七个已发表的 scRNA-seq 数据集上,对 11 种最近的网络推断方法进行了扩展的基准测试研究,考虑了不同类型的黄金标准网络和评估指标。我们根据计算要求以及恢复网络结构的能力来评估方法。我们发现,虽然大多数方法根据全局指标(如精度召回曲线下的面积)恢复了实验得出的相互作用的能力适中,但方法能够捕获与研究系统相关的调节剂的靶标。在仅使用表达的表现最佳的方法中,SCENIC、PIDC、MERLIN 或 Correlation。添加先前的生物学知识和转录因子活性的估计导致使用先验知识的 Inferelator 和 MERLIN 方法的整体性能最佳,而仅使用表达的方法表现更好。我们发现,网络推断的插补并没有提高网络推断的准确性,反而可能有害。对于可比的批量条件下推断网络的比较表明,从 scRNA-seq 数据集推断的网络通常优于或与从批量数据集推断的网络相当。我们的分析应该有助于选择网络推断方法。同时,这强调了需要改进方法和更好的黄金标准,以从 scRNAseq 数据集推断调控网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859c/9997554/2a89b86b8950/jkad004f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验