Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.
PLoS One. 2023 Mar 6;18(3):e0281074. doi: 10.1371/journal.pone.0281074. eCollection 2023.
Accurate estimates of gestational age (GA) at birth are important for preterm birth surveillance but can be challenging to obtain in low income countries. Our objective was to develop machine learning models to accurately estimate GA shortly after birth using clinical and metabolomic data.
We derived three GA estimation models using ELASTIC NET multivariable linear regression using metabolomic markers from heel-prick blood samples and clinical data from a retrospective cohort of newborns from Ontario, Canada. We conducted internal model validation in an independent cohort of Ontario newborns, and external validation in heel prick and cord blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zambia and Matlab, Bangladesh. Model performance was measured by comparing model-derived estimates of GA to reference estimates from early pregnancy ultrasound.
Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The best-performing model accurately estimated GA within about 6 days of ultrasound estimates in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for Bangladesh).
Algorithms developed in Canada provided accurate estimates of GA when applied to external cohorts from Zambia and Bangladesh. Model performance was superior in heel prick data as compared to cord blood data.
准确估计出生时的胎龄(GA)对于早产监测非常重要,但在低收入国家可能难以获得。我们的目标是开发机器学习模型,使用临床和代谢组学数据在出生后不久准确估计 GA。
我们使用弹性网络多变量线性回归从加拿大安大略省的新生儿回顾性队列中获得的足跟血样代谢标志物和临床数据,得出了三个 GA 估计模型。我们在安大略省新生儿的独立队列中进行了内部模型验证,并在赞比亚卢萨卡和孟加拉国马塔卜前瞻性出生队列中收集的足跟刺和脐带血样本数据中进行了外部验证。通过将模型衍生的 GA 估计值与早期妊娠超声的参考估计值进行比较来衡量模型性能。
从赞比亚的 311 名新生儿和孟加拉国的 1176 名新生儿中采集了样本。当应用于足跟刺数据时,表现最佳的模型在两个队列中都能在超声估计值后约 6 天内准确估计 GA(赞比亚的 MAE 为 0.79 周(0.69,0.90);孟加拉国的 MAE 为 0.81 周(0.75,0.86)),当应用于脐带血数据时,在约 7 天内准确估计 GA(赞比亚的 MAE 为 1.02 周(0.90,1.15);孟加拉国的 MAE 为 0.95 周(0.90,0.99))。
在将其应用于来自赞比亚和孟加拉国的外部队列时,在加拿大开发的算法能够准确估计 GA。与脐带血数据相比,足跟刺数据的模型性能更优。