Seoul National University, Seoul, Republic of Korea.
Samsung Electronics, Suwon, Republic of Korea.
PLoS One. 2023 Mar 6;18(3):e0282595. doi: 10.1371/journal.pone.0282595. eCollection 2023.
How can we interpret predictions of a workload classification model? A workload is a sequence of operations executed in DRAM, where each operation contains a command and an address. Classifying a given sequence into a correct workload type is important for verifying the quality of DRAM. Although a previous model achieves a reasonable accuracy on workload classification, it is challenging to interpret the prediction results since it is a black box model. A promising direction is to exploit interpretation models which compute the amount of attribution each feature gives to the prediction. However, none of the existing interpretable models are tailored for workload classification. The main challenges to be addressed are to 1) provide interpretable features for further improving interpretability, 2) measure the similarity of features for constructing the interpretable super features, and 3) provide consistent interpretations over all instances. In this paper, we propose INFO (INterpretable model For wOrkload classification), a model-agnostic interpretable model which analyzes workload classification results. INFO provides interpretable results while producing accurate predictions. We design super features to enhance interpretability by hierarchically clustering original features used for the classifier. To generate the super features, we define and measure the interpretability-friendly similarity, a variant of Jaccard similarity between original features. Then, INFO globally explains the workload classification model by generalizing super features over all instances. Experiments show that INFO provides intuitive interpretations which are faithful to the original non-interpretable model. INFO also shows up to 2.0× faster running time than the competitor while having comparable accuracies for real-world workload datasets.
我们如何解释工作负载分类模型的预测结果?工作负载是在 DRAM 中执行的一系列操作,其中每个操作都包含一个命令和一个地址。将给定序列正确地分类到正确的工作负载类型对于验证 DRAM 的质量非常重要。虽然之前的模型在工作负载分类方面取得了合理的准确性,但由于它是一个黑盒模型,因此很难解释预测结果。一个有前途的方向是利用解释模型来计算每个特征对预测的贡献程度。然而,现有的可解释模型都不是专门为工作负载分类而设计的。需要解决的主要挑战是:1)提供可解释的特征,以进一步提高可解释性;2)测量特征之间的相似性,以构建可解释的超级特征;3)为所有实例提供一致的解释。在本文中,我们提出了 INFO(用于工作负载分类的可解释模型),这是一种与模型无关的可解释模型,用于分析工作负载分类结果。INFO 在产生准确预测的同时提供可解释的结果。我们设计了超级特征,通过对用于分类器的原始特征进行层次聚类来提高可解释性。为了生成超级特征,我们定义并测量了可解释友好的相似性,这是原始特征之间 Jaccard 相似性的变体。然后,INFO 通过对所有实例进行超级特征的泛化,全局解释工作负载分类模型。实验表明,INFO 提供了直观的解释,与原始不可解释模型非常吻合。INFO 在具有可比准确性的同时,对于真实世界的工作负载数据集,运行速度比竞争对手快 2.0 倍。