Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2217703120. doi: 10.1073/pnas.2217703120. Epub 2023 Mar 6.
The release of wastewaters containing relatively low levels of nitrate (NO) results in sufficient contamination to induce harmful algal blooms and to elevate drinking water NO concentrations to potentially hazardous levels. In particular, the facile triggering of algal blooms by ultra-low concentrations of NO necessitates the development of efficient methods for NO destruction. However, promising electrochemical methods suffer from weak mass transport under low reactant concentrations, resulting in long treatment times (on the order of hours) for complete NO destruction. In this study, we present flow-through electrofiltration via an electrified membrane incorporating nonprecious metal single-atom catalysts for NO reduction activity enhancement and selectivity modification, achieving near-complete removal of ultra-low concentration NO (10 mg-N L) with a residence time of only a few seconds (10 s). By anchoring Cu single atoms supported on N-doped carbon in a carbon nanotube interwoven framework, we fabricate a free-standing carbonaceous membrane featuring high conductivity, permeability, and flexibility. The membrane achieves over 97% NO removal with high N selectivity of 86% in a single-pass electrofiltration, which is a significant improvement over flow-by operation (30% NO removal with 7% N selectivity). This high NO reduction performance is attributed to the greater adsorption and transport of nitric oxide under high molecular collision frequency coupled with a balanced supply of atomic hydrogen through H dissociation during electrofiltration. Overall, our findings provide a paradigm of applying a flow-through electrified membrane incorporating single-atom catalysts to improve the rate and selectivity of NO reduction for efficient water purification.
含有相对低浓度硝酸盐(NO)的废水排放会导致足够的污染,从而引发有害藻类大量繁殖,并将饮用水中的 NO 浓度提高到潜在危险水平。特别是,由于超低碳浓度的 NO 极易引发藻类大量繁殖,因此需要开发有效的 NO 破坏方法。然而,有前景的电化学方法在反应物浓度较低的情况下会受到传质能力弱的限制,导致完全破坏 NO 所需的处理时间较长(为数小时)。在本研究中,我们通过在通电膜中采用非贵金属单原子催化剂来实现流经式电过滤,以增强 NO 还原活性和选择性修饰,从而实现超低浓度 NO(10mg-N L)的近完全去除,停留时间仅为数秒(10s)。通过将负载在 N 掺杂碳上的 Cu 单原子锚定在相互交织的碳纳米管框架中,我们制备了一种具有高导电性、高渗透性和高柔韧性的独立式碳质膜。该膜在单次电过滤中实现了超过 97%的 NO 去除率和 86%的高 N 选择性,这比流动操作(30%的 NO 去除率和 7%的 N 选择性)有了显著提高。这种高的 NO 还原性能归因于在高分子碰撞频率下吸附和传输更多的一氧化氮,以及在电过滤过程中通过 H 解离平衡供应原子氢。总的来说,我们的研究结果为应用流经式通电膜结合单原子催化剂来提高 NO 还原的速率和选择性以实现高效水净化提供了范例。