Suppr超能文献

可穿戴设备和智能手机数据可量化肌萎缩侧索硬化症的进展,并可能提供新的疗效指标。

Wearable device and smartphone data quantify ALS progression and may provide novel outcome measures.

作者信息

Johnson Stephen A, Karas Marta, Burke Katherine M, Straczkiewicz Marcin, Scheier Zoe A, Clark Alison P, Iwasaki Satoshi, Lahav Amir, Iyer Amrita S, Onnela Jukka-Pekka, Berry James D

机构信息

Mayo Clinic, Department of Neurology, Scottsdale, AZ, USA.

Harvard T.H. Chan School of Public Health, Boston, MA, USA.

出版信息

NPJ Digit Med. 2023 Mar 6;6(1):34. doi: 10.1038/s41746-023-00778-y.

Abstract

Amyotrophic lateral sclerosis (ALS) therapeutic development has largely relied on staff-administered functional rating scales to determine treatment efficacy. We sought to determine if mobile applications (apps) and wearable devices can be used to quantify ALS disease progression through active (surveys) and passive (sensors) data collection. Forty ambulatory adults with ALS were followed for 6-months. The Beiwe app was used to administer the self-entry ALS functional rating scale-revised (ALSFRS-RSE) and the Rasch Overall ALS Disability Scale (ROADS) surveys every 2-4 weeks. Each participant used a wrist-worn activity monitor (ActiGraph Insight Watch) or an ankle-worn activity monitor (Modus StepWatch) continuously. Wearable device wear and app survey compliance were adequate. ALSFRS-R highly correlated with ALSFRS-RSE. Several wearable data daily physical activity measures demonstrated statistically significant change over time and associations with ALSFRS-RSE and ROADS. Active and passive digital data collection hold promise for novel ALS trial outcome measure development.

摘要

肌萎缩侧索硬化症(ALS)的治疗进展在很大程度上依赖于工作人员管理的功能评定量表来确定治疗效果。我们试图确定移动应用程序(应用)和可穿戴设备是否可用于通过主动(调查)和被动(传感器)数据收集来量化ALS疾病进展。对40名能够行走的成年ALS患者进行了为期6个月的跟踪。每2至4周使用Beiwe应用程序进行自我录入的修订版ALS功能评定量表(ALSFRS-RSE)和Rasch ALS总体残疾量表(ROADS)调查。每位参与者持续使用腕戴式活动监测器(ActiGraph Insight Watch)或踝戴式活动监测器(Modus StepWatch)。可穿戴设备的佩戴情况和应用程序调查的依从性良好。ALSFRS-R与ALSFRS-RSE高度相关。一些可穿戴设备数据中的日常身体活动指标显示,随着时间推移有统计学上的显著变化,并且与ALSFRS-RSE和ROADS相关。主动和被动数字数据收集有望用于开发新型ALS试验结果指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d6a/9988846/fe1acd5c767c/41746_2023_778_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验