Molecular and Cellular Biology, University of Washington, Seattle, WA, USA.
Department of Genome Sciences, University of Washington, Seattle, WA, USA.
Nat Chem Biol. 2023 Aug;19(8):981-991. doi: 10.1038/s41589-023-01278-6. Epub 2023 Mar 6.
CRISPR-Cas9 has yielded a plethora of effectors, including targeted transcriptional activators, base editors and prime editors. Current approaches for inducibly modulating Cas9 activity lack temporal precision and require extensive screening and optimization. We describe a versatile, chemically controlled and rapidly activated single-component DNA-binding Cas9 switch, ciCas9, which we use to confer temporal control over seven Cas9 effectors, including two cytidine base editors, two adenine base editors, a dual base editor, a prime editor and a transcriptional activator. Using these temporally controlled effectors, we analyze base editing kinetics, showing that editing occurs within hours and that rapid early editing of nucleotides predicts eventual editing magnitude. We also reveal that editing at preferred nucleotides within target sites increases the frequency of bystander edits. Thus, the ciCas9 switch offers a simple, versatile approach to generating chemically controlled Cas9 effectors, informing future effector engineering and enabling precise temporal effector control for kinetic studies.
CRISPR-Cas9 产生了大量的效应物,包括靶向转录激活剂、碱基编辑器和 Prime 编辑器。目前用于可诱导调节 Cas9 活性的方法缺乏时间精度,需要广泛的筛选和优化。我们描述了一种多功能的、化学控制的和快速激活的单组分 DNA 结合 Cas9 开关 ciCas9,我们用它来对七种 Cas9 效应物进行时间控制,包括两个胞嘧啶碱基编辑器、两个腺嘌呤碱基编辑器、一个双碱基编辑器、一个 Prime 编辑器和一个转录激活剂。使用这些时间控制的效应物,我们分析了碱基编辑的动力学,表明编辑发生在几个小时内,并且早期快速编辑核苷酸预测最终的编辑程度。我们还表明,在靶位点内的优选核苷酸处进行编辑会增加旁观者编辑的频率。因此,ciCas9 开关为生成化学控制的 Cas9 效应物提供了一种简单、通用的方法,为未来的效应物工程提供了信息,并为动力学研究提供了精确的时间效应物控制。