Suppr超能文献

基因编辑技术的“新宠”——单碱基编辑器。

The "new favorite" of gene editing technology-single base editors.

作者信息

Wei Yu, Zhang Xiao Hui, Li Da Li

机构信息

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.

出版信息

Yi Chuan. 2017 Dec 20;39(12):1115-1121. doi: 10.16288/j.yczz.17-389.

Abstract

Programmable nucleases are cutting edge genetic technology which edits targeted DNA sequences through generation of site-specific double-strand DNA breaks (DSBs). To improve the efficiency and precision of genetic modification, scientists have developed a single-base editing system (base editor) through combining of CRISPR/Cas9 system with cytosine deaminase. Compared with Cas9 system, this base editor can convert cytosine to thymine (C > T) at specific site more efficiently without inducing DSBs to avoid generation of indels. However, the base editor can only generate transition of pyrimidine but could not modify purines. Recently, Nature published a novel base editing system to convert adenine to guanine (ABEs, adenine base editors) through fusion of Cas9 nickase to a modified deaminase which is evolved through screening of random library based on tRNA adenine deaminase from E. coli. Here, we summarize the development of single-base editing tools and the latest research progress, especially the optimization process of ABEs, as well as the potential directions of the base editors.

摘要

可编程核酸酶是前沿的基因技术,它通过产生位点特异性双链DNA断裂(DSB)来编辑靶向DNA序列。为了提高基因编辑的效率和精度,科学家们通过将CRISPR/Cas9系统与胞嘧啶脱氨酶相结合,开发出了一种单碱基编辑系统(碱基编辑器)。与Cas9系统相比,这种碱基编辑器能够在特定位点更高效地将胞嘧啶转化为胸腺嘧啶(C>T),而不会诱导DSB产生,从而避免了插入缺失的产生。然而,该碱基编辑器只能产生嘧啶转换,无法修饰嘌呤。最近,《自然》杂志发表了一种新型碱基编辑系统,通过将Cas9切口酶与一种经过修饰的脱氨酶融合,该脱氨酶是基于大肠杆菌的tRNA腺嘌呤脱氨酶通过随机文库筛选进化而来,从而将腺嘌呤转化为鸟嘌呤(ABEs,腺嘌呤碱基编辑器)。在此,我们总结了单碱基编辑工具的发展和最新研究进展,特别是ABEs的优化过程,以及碱基编辑器的潜在发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验