State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Chemphyschem. 2023 Jun 1;24(11):e202300059. doi: 10.1002/cphc.202300059. Epub 2023 Mar 23.
Oxygen defects are among essential issues and required to be manipulated in correlated electronic oxides with insulator-metal transition (IMT). Besides, surface and interface control are necessary but challenging in field-induced electronic switching towards advanced IMT-triggered transistors and optical modulators. Herein, we demonstrated reversible entropy-driven oxygen defect migrations and reversible IMT suppression in vanadium dioxide (VO ) phase-change electronic switching. The initial IMT was suppressed with oxygen defects, which is caused by the entropy change during reversed surface oxygen ionosorption on the VO nanostructures. This IMT suppression is reversible and reverts when the adsorbed oxygen extracts electrons from the surface and heals defects again. The reversible IMT suppression observed in the VO nanobeam with M2 phase is accompanied by large variations in the IMT temperature. We also achieved irreversible and stable IMT by exploiting an Al O partition layer prepared by atomic layer deposition (ALD) to disrupt the entropy-driven defect migration. We expected that such reversible modulations would be helpful for understanding the origin of surface-driven IMT in correlated vanadium oxides, and constructing functional phase-change electronic and optical devices.
氧空位是关联电子氧化物中具有绝缘-金属转变(IMT)的基本问题之一,需要加以调控。此外,在电场诱导的电子开关中,表面和界面控制对于先进的 IMT 触发晶体管和光学调制器是必要的,但具有挑战性。在此,我们在二氧化钒(VO )相转变电子开关中证明了熵驱动氧空位迁移和 IMT 抑制的可逆性。初始 IMT 被氧空位抑制,这是由于 VO 纳米结构上反向表面氧离子吸附过程中的熵变引起的。这种 IMT 抑制是可逆的,当吸附氧从表面提取电子并再次修复缺陷时,抑制作用会恢复。在 M2 相的 VO 纳米梁中观察到的可逆 IMT 抑制伴随着 IMT 温度的大幅变化。我们还通过利用原子层沉积(ALD)制备的 Al2O3 分隔壁层来破坏熵驱动的缺陷迁移,实现了不可逆且稳定的 IMT。我们期望这种可逆的调制有助于理解相关钒氧化物中表面驱动的 IMT 的起源,并构建功能性相变电子和光学器件。