Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Korea Basic Science Institute Seoul, 145 anam-ro Seongbuk-gu, Seoul 02841, Republic of Korea.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18463-18472. doi: 10.1021/acsami.3c00254. Epub 2023 Mar 7.
While neuromorphic computing can define a new era for next-generation computing architecture, the introduction of an efficient synaptic transistor for neuromorphic edge computing still remains a challenge. Here, we envision an atomically thin 2D Te synaptic device capable of achieving a desirable neuromorphic edge computing design. The hydrothermally grown 2D Te nanosheet synaptic transistor apparently mimicked the biological synaptic nature, exhibiting 100 effective multilevel states, a low power consumption of ∼110 fJ, excellent linearity, and short-/long-term plasticity. Furthermore, the 2D Te synaptic device achieved reconfigurable MNIST recognition accuracy characteristics of 88.2%, even after harmful detergent environment infection. We believe that this work serves as a guide for developing futuristic neuromorphic edge computing.
虽然神经形态计算可以为下一代计算架构定义一个新时代,但为神经形态边缘计算引入高效的突触晶体管仍然是一个挑战。在这里,我们设想了一种原子级薄的 2D Te 突触器件,能够实现理想的神经形态边缘计算设计。水热生长的 2D Te 纳米片突触晶体管明显模拟了生物突触的性质,表现出 100 个有效的多级状态、约 110fJ 的低功耗、优异的线性度和短/长期可塑性。此外,2D Te 突触器件在有害的清洁剂环境感染后仍能实现可重构的 MNIST 识别准确率为 88.2%。我们相信这项工作为开发未来的神经形态边缘计算提供了指导。