Suppr超能文献

用于神经形态边缘计算的环境稳定且可重构的超低功耗二维碲烯突触晶体管。

Environmentally Stable and Reconfigurable Ultralow-Power Two-Dimensional Tellurene Synaptic Transistor for Neuromorphic Edge Computing.

机构信息

Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Korea Basic Science Institute Seoul, 145 anam-ro Seongbuk-gu, Seoul 02841, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18463-18472. doi: 10.1021/acsami.3c00254. Epub 2023 Mar 7.

Abstract

While neuromorphic computing can define a new era for next-generation computing architecture, the introduction of an efficient synaptic transistor for neuromorphic edge computing still remains a challenge. Here, we envision an atomically thin 2D Te synaptic device capable of achieving a desirable neuromorphic edge computing design. The hydrothermally grown 2D Te nanosheet synaptic transistor apparently mimicked the biological synaptic nature, exhibiting 100 effective multilevel states, a low power consumption of ∼110 fJ, excellent linearity, and short-/long-term plasticity. Furthermore, the 2D Te synaptic device achieved reconfigurable MNIST recognition accuracy characteristics of 88.2%, even after harmful detergent environment infection. We believe that this work serves as a guide for developing futuristic neuromorphic edge computing.

摘要

虽然神经形态计算可以为下一代计算架构定义一个新时代,但为神经形态边缘计算引入高效的突触晶体管仍然是一个挑战。在这里,我们设想了一种原子级薄的 2D Te 突触器件,能够实现理想的神经形态边缘计算设计。水热生长的 2D Te 纳米片突触晶体管明显模拟了生物突触的性质,表现出 100 个有效的多级状态、约 110fJ 的低功耗、优异的线性度和短/长期可塑性。此外,2D Te 突触器件在有害的清洁剂环境感染后仍能实现可重构的 MNIST 识别准确率为 88.2%。我们相信这项工作为开发未来的神经形态边缘计算提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验