Suppr超能文献

使用非线性配准和临床磁共振成像对帕金森病治疗靶点进行自动分割:方法学比较、疾病存在情况及质量控制

Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control.

作者信息

Miller Christopher Paul Kingsley, Muller Jennifer, Noecker Angela M, Matias Caio, Alizadeh Mahdi, McIntyre Cameron, Wu Chengyuan

机构信息

Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, Kansas, USA.

出版信息

Stereotact Funct Neurosurg. 2023;101(2):146-157. doi: 10.1159/000526719. Epub 2023 Mar 7.

Abstract

INTRODUCTION

Accurate and precise delineation of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) is critical for the clinical treatment and research of Parkinson's disease (PD). Automated segmentation is a developing technology which addresses limitations of visualizing deep nuclei on MR imaging and standardizing their definition in research applications. We sought to compare manual segmentation with three workflows for template-to-patient nonlinear registration providing atlas-based automatic segmentation of deep nuclei.

METHODS

Bilateral GPi, STN, and red nucleus (RN) were segmented for 20 PD and 20 healthy control (HC) subjects using 3T MRIs acquired for clinical purposes. The automated workflows used were an option available in clinical practice and two common research protocols. Quality control (QC) was performed on registered templates via visual inspection of readily discernible brain structures. Manual segmentation using T1, proton density, and T2 sequences was used as "ground truth" data for comparison. Dice similarity coefficient (DSC) was used to assess agreement between segmented nuclei. Further analysis was done to compare the influences of disease state and QC classifications on DSC.

RESULTS

Automated segmentation workflows (CIT-S, CRV-AB, and DIST-S) had the highest DSC for the RN and lowest for the STN. Manual segmentations outperformed automated segmentation for all workflows and nuclei; however, for 3/9 workflows (CIT-S STN, CRV-AB STN, and CRV-AB GPi) the differences were not statically significant. HC and PD only showed significant differences in 1/9 comparisons (DIST-S GPi). QC classification only demonstrated significantly higher DSC in 2/9 comparisons (CRV-AB RN and GPi).

CONCLUSION

Manual segmentations generally performed better than automated segmentations. Disease state does not appear to have a significant effect on the quality of automated segmentations via nonlinear template-to-patient registration. Notably, visual inspection of template registration is a poor indicator of the accuracy of deep nuclei segmentation. As automatic segmentation methods continue to evolve, efficient and reliable QC methods will be necessary to support safe and effective integration into clinical workflows.

摘要

引言

准确且精确地勾勒苍白球内侧部(GPi)和丘脑底核(STN)对于帕金森病(PD)的临床治疗和研究至关重要。自动分割是一项不断发展的技术,它解决了在磁共振成像(MR)上可视化深部核团的局限性,并在研究应用中规范了它们的定义。我们试图将手动分割与三种用于模板到患者非线性配准的工作流程进行比较,以提供基于图谱的深部核团自动分割。

方法

使用为临床目的采集的3T MRI,对20例帕金森病患者和20例健康对照(HC)受试者的双侧GPi、STN和红核(RN)进行分割。所使用的自动工作流程是临床实践中可用的一种选项以及两种常见的研究方案。通过对易于识别的脑结构进行目视检查,对配准后的模板进行质量控制(QC)。使用T1、质子密度和T2序列的手动分割用作“金标准”数据进行比较。使用骰子相似系数(DSC)来评估分割核团之间的一致性。进一步分析以比较疾病状态和QC分类对DSC的影响。

结果

自动分割工作流程(CIT - S、CRV - AB和DIST - S)对RN的DSC最高,对STN的DSC最低。对于所有工作流程和核团,手动分割均优于自动分割;然而,对于3/9个工作流程(CIT - S STN、CRV - AB STN和CRV - AB GPi),差异无统计学意义。HC和PD仅在1/9的比较中显示出显著差异(DIST - S GPi)。QC分类仅在2/9的比较中显示出显著更高的DSC(CRV - AB RN和GPi)。

结论

手动分割通常比自动分割表现更好。疾病状态似乎对通过非线性模板到患者配准的自动分割质量没有显著影响。值得注意的是,对模板配准的目视检查是深部核团分割准确性的一个较差指标。随着自动分割方法不断发展,将需要高效且可靠的QC方法来支持安全有效地整合到临床工作流程中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验