Suppr超能文献

基于分层注意力-UNet的MRI分割实现丘脑底核深部脑刺激靶点的自动定位

Automatic localization of target point for subthalamic nucleus-deep brain stimulation via hierarchical attention-UNet based MRI segmentation.

作者信息

Rui-Qiang Liu, Xiao-Dong Cai, Ren-Zhe Tu, Cai-Zi Li, Wei Yan, Dou-Dou Zhang, Lin-Xia Xiao, Wei-Xin Si

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Med Phys. 2023 Jan;50(1):50-60. doi: 10.1002/mp.15956. Epub 2022 Sep 9.

Abstract

BACKGROUND

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for patients with advanced Parkinson's disease, the outcome of this surgery is highly dependent on the accurate placement of the electrode in the optimal target of STN.

PURPOSE

In this study, we aim to develop a target localization pipeline for DBS surgery, considering that the heart of this matter is to achieve the STN and red nucleus segmentation, a deep learning-based automatic segmentation approach is proposed to tackle this issue.

METHODS

To address the problems of ambiguous boundaries and variable shape of the segmentation targets, the hierarchical attention mechanism with two different attention strategies is integrated into an encoder-decoder network for mining both semantics and fine-grained details for segmentation. The hierarchical attention mechanism is utilized to suppress irrelevant regions in magnetic resonance (MR) images while build long-range dependency among segmentation targets. Specifically, the attention gate (AG) is integrated into low-level features to suppress irrelevant regions in an input image while highlighting the salient features useful for segmentation. Besides, the self-attention involved in the transformer block is integrated into high-level features to model the global context. Ninety-nine brain magnetic resonance imaging (MRI) studies were collected from 99 patients with Parkinson's disease undergoing STN-DBS surgery, among which 80 samples were randomly selected as the training datasets for deep learning training, and ground truths (segmentation masks) were manually generated by radiologists.

RESULTS

We applied five-fold cross-validation on these data to train our model, the mean results on 19 test samples are used to conduct the comparison experiments, the Dice similarity coefficient (DSC), Jaccard (JA), sensitivity (SEN), and HD95 of the segmentation for STN are 88.20%, 80.32%, 90.13%, and 1.14 mm, respectively, outperforming the state-of-the-art STN segmentation method with 2.82%, 4.52%, 2.56%, and 0.02 mm respectively. The source code and trained models of this work have been released in the URL below: https://github.com/liuruiqiang/HAUNet/tree/master.

CONCLUSIONS

In this study, we demonstrate the effectiveness of the hierarchical attention mechanism for building global dependency on high-level semantic features and enhancing the fine-grained details on low-level features, the experimental results show that our method has considerable superiority for STN and red nucleus segmentation, which can provide accurate target localization for STN-DBS.

摘要

背景

丘脑底核深部脑刺激术(STN-DBS)是晚期帕金森病患者的一种有效治疗方法,该手术的效果高度依赖于电极在丘脑底核最佳靶点的精确放置。

目的

在本研究中,我们旨在开发一种用于DBS手术的靶点定位流程,鉴于此问题的核心是实现丘脑底核和红核的分割,提出了一种基于深度学习的自动分割方法来解决这一问题。

方法

为了解决分割目标边界模糊和形状多变的问题,将具有两种不同注意力策略的分层注意力机制集成到编码器-解码器网络中,以挖掘用于分割的语义和细粒度细节。分层注意力机制用于抑制磁共振(MR)图像中的无关区域,同时在分割目标之间建立长程依赖关系。具体而言,注意力门(AG)被集成到低级特征中,以抑制输入图像中的无关区域,同时突出对分割有用的显著特征。此外,Transformer模块中涉及的自注意力被集成到高级特征中,以对全局上下文进行建模。从99例接受STN-DBS手术的帕金森病患者中收集了99份脑磁共振成像(MRI)研究数据,其中80个样本被随机选作深度学习训练的数据集,放射科医生手动生成了真值(分割掩码)。

结果

我们对这些数据进行了五折交叉验证来训练我们的模型,使用19个测试样本的平均结果进行比较实验,丘脑底核分割的Dice相似系数(DSC)、杰卡德指数(JA)、敏感度(SEN)和HD95分别为88.20%、80.32%、90.13%和1.14毫米,分别比最先进的丘脑底核分割方法高出2.82%、4.52%、2.56%和0.02毫米。这项工作的源代码和训练模型已在以下网址发布:https://github.com/liuruiqiang/HAUNet/tree/master。

结论

在本研究中,我们证明了分层注意力机制在建立对高级语义特征的全局依赖和增强低级特征的细粒度细节方面的有效性,实验结果表明我们的方法在丘脑底核和红核分割方面具有相当大的优势,可为STN-DBS提供准确的靶点定位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验