文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定位和配准精度对立体定向空间中深部脑刺激电极位置估计的影响。

The impact of localization and registration accuracy on estimates of deep brain stimulation electrode position in stereotactic space.

作者信息

Abbass Mohamad, Taha Alaa, Gilmore Greydon, Santyr Brendan, Chalil Alan, Jog Mandar, MacDougall Keith, Parrent Andrew G, Peters Terry M, Lau Jonathan C

机构信息

Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Canada.

Imaging Research Laboratories, Robarts Research Institute, Western University, London, Canada.

出版信息

Imaging Neurosci (Camb). 2025 May 16;3. doi: 10.1162/imag_a_00579. eCollection 2025.


DOI:10.1162/imag_a_00579
PMID:40800992
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12319956/
Abstract

Effects of deep brain stimulation (DBS) depend on millimetric accuracy and are commonly studied across populations by registering patient scans to a stereotactic space. Multiple factors contribute to estimates of electrode position, but the millimetric contributions of these factors remain poorly quantified. We previously validated 32 anatomical fiducials (AFIDs) to measure AFID registration error (AFRE), which can capture focal misregistration not observed using volume-based methods. To this end, we used the AFIDs framework to examine the effects of misregistration on electrode position in stereotactic space, leveraging a retrospective series of patients who underwent subthalamic nucleus (STN) DBS. Raters independently localized DBS electrodes and AFIDs on patient scans, which were non-linearly registered to a common stereotactic (MNI) space. AFIDs provided intuitive measures of registration accuracy, with AFREs ranging from 1.49 mm to 6.85 mm across brain regions. Subcortical AFIDs in proximity to the DBS target (STN) had AFREs that spatially covaried, suggesting consistent spatial patterns of misregistration to stereotactic space. These identified spatial patterns account for 28% of the variance in electrode position along the axis of maximum variance, corresponding to a median of 0.64 mm (range of 0.05 to 2.05 mm). The AFIDs framework provides millimetric estimates of registration accuracy in DBS, while allowing the uncoupling of registration-related factors from other sources of variance in electrode position. Furthermore, they can be employed for estimating registration-related variance in population studies, for quality control, and to provide a basis for comparison as well as optimization of registration parameters and software.

摘要

深部脑刺激(DBS)的效果取决于毫米级的精度,并且通常通过将患者扫描图像配准到立体定向空间来对不同人群进行研究。多种因素会影响电极位置的估计,但这些因素在毫米级上的影响仍未得到很好的量化。我们之前验证了32个解剖基准点(AFIDs)来测量AFID配准误差(AFRE),它可以捕捉到基于体积的方法未观察到的局部配准错误。为此,我们利用AFIDs框架,通过回顾性研究一系列接受丘脑底核(STN)DBS治疗的患者,来研究配准错误对立体定向空间中电极位置的影响。评估人员在患者扫描图像上独立定位DBS电极和AFIDs,这些图像被非线性配准到一个共同的立体定向(MNI)空间。AFIDs提供了直观的配准精度测量方法,不同脑区的AFRE范围为1.49毫米至6.85毫米。靠近DBS靶点(STN)的皮质下AFIDs的AFRE在空间上存在协变,表明与立体定向空间的配准错误存在一致的空间模式。这些确定的空间模式占电极位置沿最大方差轴方差的28%,对应中位数为0.64毫米(范围为0.05至2.05毫米)。AFIDs框架提供了DBS中配准精度的毫米级估计,同时允许将与配准相关的因素与电极位置的其他方差来源解耦。此外,它们可用于估计人群研究中与配准相关的方差,用于质量控制,并为比较以及优化配准参数和软件提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/dc2f94d42cee/imag_a_00579_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/d32e1d95071a/imag_a_00579_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/3c93d70eb597/imag_a_00579_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/48cf0026200d/imag_a_00579_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/6feae6c93b53/imag_a_00579_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/b3032160fc4f/imag_a_00579_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/dc2f94d42cee/imag_a_00579_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/d32e1d95071a/imag_a_00579_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/3c93d70eb597/imag_a_00579_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/48cf0026200d/imag_a_00579_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/6feae6c93b53/imag_a_00579_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/b3032160fc4f/imag_a_00579_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d0e/12319956/dc2f94d42cee/imag_a_00579_fig6.jpg

相似文献

[1]
The impact of localization and registration accuracy on estimates of deep brain stimulation electrode position in stereotactic space.

Imaging Neurosci (Camb). 2025-5-16

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Review of the targeting accuracy of frameless and frame-based robot-assisted deep brain stimulation electrode implantation in pediatric patients using the Neurolocate module.

J Neurosurg Pediatr. 2024-3-1

[4]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[5]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[6]
Modulation of Cerebellar Oscillations with Subthalamic Stimulation in Patients with Parkinson's Disease.

J Parkinsons Dis. 2024

[7]
Short-Term Memory Impairment

2025-1

[8]
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.

Cochrane Database Syst Rev. 2024-12-16

[9]
Depressive symptoms can negatively influence patient reported disease severity after subthalamic nucleus stimulation for Parkinson's disease.

J Parkinsons Dis. 2025-6-26

[10]
Accuracy of Deep Brain Stimulation Lead Placement Using a Cranial Robotic Guidance Platform: A Preliminary Cadaveric Study.

Turk Neurosurg. 2025

本文引用的文献

[1]
MRI-degad: toward accurate conversion of gadolinium-enhanced T1w MRIs to non-contrast-enhanced scans using CNNs.

Int J Comput Assist Radiol Surg. 2024-7

[2]
Magnetic resonance imaging datasets with anatomical fiducials for quality control and registration.

Sci Data. 2023-7-12

[3]
Quantifying the Variability Associated with Postoperative Localization of Deep Brain Stimulation Electrodes.

Stereotact Funct Neurosurg. 2023

[4]
Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control.

Stereotact Funct Neurosurg. 2023

[5]
STN-DBS electrode placement accuracy and motor improvement in Parkinson's disease: systematic review and individual patient meta-analysis.

J Neurol Neurosurg Psychiatry. 2023-3

[6]
Interrater reliability of deep brain stimulation electrode localizations.

Neuroimage. 2022-11-15

[7]
Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus.

Cell Rep. 2022-3-1

[8]
Predict initial subthalamic nucleus stimulation outcome in Parkinson's disease with brain morphology.

CNS Neurosci Ther. 2022-5

[9]
Application of the anatomical fiducials framework to a clinical dataset of patients with Parkinson's disease.

Brain Struct Funct. 2022-1

[10]
Relationship between electrode position of deep brain stimulation and motor symptoms of Parkinson's disease.

BMC Neurol. 2021-3-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索