Suppr超能文献

基于飞秒光参量振荡器的双波段同时超光谱受激拉曼散射显微镜。

Simultaneous Dual-Band Hyperspectral Stimulated Raman Scattering Microscopy with Femtosecond Optical Parametric Oscillators.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Phys Chem B. 2023 Mar 16;127(10):2187-2197. doi: 10.1021/acs.jpcb.2c09105. Epub 2023 Mar 8.

Abstract

Stimulated Raman scattering (SRS) microscopy is a label-free quantitative optical technique for imaging molecular distributions in cells and tissues by probing their intrinsic vibrational frequencies. Despite its usefulness, existing SRS imaging techniques have limited spectral coverage due to either a wavelength tuning constraint or narrow spectral bandwidth. High-wavenumber SRS imaging is commonly used to map lipid and protein distribution in biological cells and visualize cell morphology. However, to detect small molecules or Raman tags, imaging in the fingerprint region or "silent" region, respectively, is often required. For many applications, it is desirable to collect SRS images in two Raman spectral regions simultaneously for visualizing the distribution of specific molecules in cellular compartments or providing accurate ratiometric analysis. In this work, we present an SRS microscopy system using three beams generated by a femtosecond oscillator to acquire hyperspectral SRS image stacks in two arbitrary vibrational frequency bands, between 650-3280 cm, simultaneously. We demonstrate potential biomedical applications of the system in investigating fatty acid metabolism, cellular drug uptake and accumulation, and lipid unsaturation level in tissues. We also show that the dual-band hyperspectral SRS imaging system can be adapted for the broadband fingerprint region hyperspectral imaging (1100-1800 cm) by simply adding a modulator.

摘要

受激拉曼散射(SRS)显微镜是一种无标记定量光学技术,通过探测细胞和组织中分子的固有振动频率来对其进行成像。尽管该技术非常有用,但由于波长调谐限制或光谱带宽较窄,现有的 SRS 成像技术的光谱覆盖范围有限。高波数 SRS 成像通常用于绘制生物细胞中的脂质和蛋白质分布,并观察细胞形态。然而,为了检测小分子或拉曼标记物,通常需要在指纹区或“静默”区进行成像。对于许多应用,同时收集两个拉曼光谱区域的 SRS 图像以可视化细胞区室中特定分子的分布或提供准确的比率分析是非常理想的。在这项工作中,我们展示了一种使用飞秒振荡器产生的三束光的 SRS 显微镜系统,该系统能够在两个任意振动频率带(650-3280cm)之间同时获取超光谱 SRS 图像堆栈。我们展示了该系统在研究脂肪酸代谢、细胞药物摄取和积累以及组织中脂质不饱和水平方面的潜在生物医学应用。我们还表明,通过简单地添加调制器,该双带超光谱 SRS 成像系统可以适应宽带指纹区超光谱成像(1100-1800cm)。

相似文献

1
Simultaneous Dual-Band Hyperspectral Stimulated Raman Scattering Microscopy with Femtosecond Optical Parametric Oscillators.
J Phys Chem B. 2023 Mar 16;127(10):2187-2197. doi: 10.1021/acs.jpcb.2c09105. Epub 2023 Mar 8.
2
Multi-window sparse spectral sampling stimulated Raman scattering microscopy.
Biomed Opt Express. 2021 Sep 9;12(10):6095-6114. doi: 10.1364/BOE.432177. eCollection 2021 Oct 1.
3
Frequency-Domain Low-Wavenumber Hyperspectral Stimulated Raman Scattering Microscopy.
Anal Chem. 2024 Jun 25;96(25):10341-10347. doi: 10.1021/acs.analchem.4c01298. Epub 2024 Jun 12.
4
Broadband stimulated Raman scattering microscopy with wavelength-scanning detection.
J Raman Spectrosc. 2020 Oct;51(10):1951-1959. doi: 10.1002/jrs.5816. Epub 2020 Jan 3.
5
Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope.
J Biophotonics. 2019 Sep;12(9):e201900028. doi: 10.1002/jbio.201900028. Epub 2019 Jun 14.
6
Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
Acc Chem Res. 2014 Aug 19;47(8):2282-90. doi: 10.1021/ar400331q. Epub 2014 May 28.
8
Widely tunable fiber optical parametric oscillator synchronized with a Ti:sapphire laser for stimulated Raman scattering microscopy.
Biomed Opt Express. 2024 Apr 19;15(5):3191-3199. doi: 10.1364/BOE.515446. eCollection 2024 May 1.
10
Epi-Detected Hyperspectral Stimulated Raman Scattering Microscopy for Label-Free Molecular Subtyping of Glioblastomas.
Anal Chem. 2018 Sep 4;90(17):10249-10255. doi: 10.1021/acs.analchem.8b01677. Epub 2018 Aug 17.

引用本文的文献

1
Exploring the use of NIR and Raman spectroscopy for the prediction of quality traits in PDO cheeses.
Front Nutr. 2024 Feb 6;11:1327301. doi: 10.3389/fnut.2024.1327301. eCollection 2024.
2
Discrimination of lipid composition and cellular localization in human liver tissues by stimulated Raman scattering microscopy.
J Biomed Opt. 2024 Jan;29(1):016008. doi: 10.1117/1.JBO.29.1.016008. Epub 2024 Jan 24.
3
Measuring Drug Response with Single-Cell Growth Rate Quantification.
Anal Chem. 2023 Dec 12;95(49):18114-18121. doi: 10.1021/acs.analchem.3c03434. Epub 2023 Nov 28.

本文引用的文献

1
Quantitative Imaging of Intracellular Density with Ratiometric Stimulated Raman Scattering Microscopy.
J Phys Chem B. 2022 Oct 6;126(39):7595-7603. doi: 10.1021/acs.jpcb.2c04355. Epub 2022 Sep 22.
3
Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2117938119. doi: 10.1073/pnas.2117938119. Epub 2022 Apr 22.
4
Quantitative Stimulated Raman Scattering Microscopy: Promises and Pitfalls.
Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):269-289. doi: 10.1146/annurev-anchem-061020-015110. Epub 2022 Mar 17.
5
Quantitative Chemical Imaging of Bone Tissue for Intraoperative and Diagnostic Applications.
Anal Chem. 2022 Mar 8;94(9):3791-3799. doi: 10.1021/acs.analchem.1c04354. Epub 2022 Feb 21.
6
Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy.
Biomed Opt Express. 2021 Nov 24;12(12):7780-7789. doi: 10.1364/BOE.446348. eCollection 2021 Dec 1.
7
Multiwindow SRS Imaging Using a Rapid Widely Tunable Fiber Laser.
Anal Chem. 2021 Nov 30;93(47):15703-15711. doi: 10.1021/acs.analchem.1c03604. Epub 2021 Nov 17.
8
A Versatile Deep Learning Architecture for Classification and Label-Free Prediction of Hyperspectral Images.
Nat Mach Intell. 2021 Apr;3:306-315. doi: 10.1038/s42256-021-00309-y. Epub 2021 Mar 11.
9
High-Speed Chemical Imaging by Dense-Net Learning of Femtosecond Stimulated Raman Scattering.
J Phys Chem Lett. 2020 Oct 15;11(20):8573-8578. doi: 10.1021/acs.jpclett.0c01598. Epub 2020 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验