Manifold Bryce, Men Shuaiqian, Hu Ruoqian, Fu Dan
Department of Chemistry, University of Washington, Seattle, WA, USA.
Nat Mach Intell. 2021 Apr;3:306-315. doi: 10.1038/s42256-021-00309-y. Epub 2021 Mar 11.
Hyperspectral imaging is a technique that provides rich chemical or compositional information not regularly available to traditional imaging modalities such as intensity imaging or color imaging based on the reflection, transmission, or emission of light. Analysis of hyperspectral imaging often relies on machine learning methods to extract information. Here, we present a new flexible architecture, the U-within-U-Net, that can perform classification, segmentation, and prediction of orthogonal imaging modalities on a variety of hyperspectral imaging techniques. Specifically, we demonstrate feature segmentation and classification on the Indian Pines hyperspectral dataset and simultaneous location prediction of multiple drugs in mass spectrometry imaging of rat liver tissue. We further demonstrate label-free fluorescence image prediction from hyperspectral stimulated Raman scattering microscopy images. The applicability of the U-within-U-Net architecture on diverse datasets with widely varying input and output dimensions and data sources suggest that it has great potential in advancing the use of hyperspectral imaging across many different application areas ranging from remote sensing, to medical imaging, to microscopy.
高光谱成像是一种基于光的反射、透射或发射,能够提供丰富化学或成分信息的技术,而这些信息是传统成像模式(如强度成像或基于颜色成像)通常无法获取的。高光谱成像分析通常依赖机器学习方法来提取信息。在此,我们提出了一种新的灵活架构——U型嵌套U-Net,它能够对多种高光谱成像技术进行正交成像模式的分类、分割和预测。具体而言,我们展示了在印第安纳松树高光谱数据集上的特征分割和分类,以及在大鼠肝脏组织质谱成像中对多种药物的同时定位预测。我们还展示了从高光谱受激拉曼散射显微镜图像进行无标记荧光图像预测。U型嵌套U-Net架构在具有广泛不同输入和输出维度及数据源的多样数据集上的适用性表明,它在推动高光谱成像在从遥感、医学成像到显微镜学等许多不同应用领域的应用方面具有巨大潜力。