Suppr超能文献

散粒噪声限制的可调谐双振动频率受激拉曼散射显微镜

Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy.

作者信息

Heuke Sandro, Rimke Ingo, Sarri Barbara, Gasecka Paulina, Appay Romain, Legoff Loic, Volz Peter, Büttner Edlef, Rigneault Hervé

机构信息

Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.

contributed equally to this work.

出版信息

Biomed Opt Express. 2021 Nov 24;12(12):7780-7789. doi: 10.1364/BOE.446348. eCollection 2021 Dec 1.

Abstract

We present a shot-noise limited SRS implementation providing a >200 mW per excitation wavelength that is optimized for addressing two molecular vibrations simultaneously. As the key to producing a 3 ps laser of different colors out of a single fs-laser (15 nm FWHM), we use ultra-steep angle-tunable optical filters to extract 2 narrow-band Stokes laser beams (1-2 nm & 1-2 ps), which are separated by 100 cm. The center part of the fs-laser is frequency doubled to pump an optical parametric oscillator (OPO). The temporal width of the OPO's output (1 ps) is matched to the Stokes beams and can be tuned from 650-980 nm to address simultaneously two Raman shifts separated by 100 cm that are located between 500 cm and 5000 cm. We demonstrate background-free SRS imaging of C-D labeled biological samples (bacteria and ). Furthermore, high quality virtual stimulated Raman histology imaging of a brain adenocarcinoma is shown for pixel dwell times of 16 µs.

摘要

我们展示了一种散粒噪声受限的受激拉曼散射(SRS)实现方案,其每个激发波长可提供超过200 mW的功率,该方案针对同时激发两种分子振动进行了优化。作为从单个飞秒激光(15 nm半高宽)产生不同颜色的3 ps激光的关键,我们使用超陡角度可调光学滤波器来提取2束窄带斯托克斯激光束(1 - 2 nm和1 - 2 ps),它们之间的频率间隔为100 cm⁻¹。飞秒激光的中心部分进行倍频以泵浦光学参量振荡器(OPO)。OPO输出的时间宽度(1 ps)与斯托克斯光束匹配,并且可以在650 - 980 nm范围内调谐,以同时激发位于500 cm⁻¹至5000 cm⁻¹之间、频率间隔为100 cm⁻¹的两个拉曼频移。我们展示了对C - D标记的生物样品(细菌等)进行无背景的SRS成像。此外,对于16 µs的像素驻留时间,展示了脑腺癌的高质量虚拟受激拉曼组织学成像。

相似文献

1
Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy.
Biomed Opt Express. 2021 Nov 24;12(12):7780-7789. doi: 10.1364/BOE.446348. eCollection 2021 Dec 1.
2
Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy.
Light Sci Appl. 2016 Oct 7;5(10):e16149. doi: 10.1038/lsa.2016.149. eCollection 2016 Oct.
3
Stimulated Raman scattering signals recorded by the use of an optical imaging technique.
Appl Opt. 2015 Jul 10;54(20):6377-85. doi: 10.1364/AO.54.006377.
4
Stimulated Raman scattering holography for time-resolved imaging of methane gas.
Appl Opt. 2016 May 1;55(13):3429-34. doi: 10.1364/AO.55.003429.
8
Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
Acc Chem Res. 2014 Aug 19;47(8):2282-90. doi: 10.1021/ar400331q. Epub 2014 May 28.

引用本文的文献

1
Chemical Fingerprint Imaging with Broadband Coherent Anti-Stokes Raman Scattering Microscopy.
Anal Chem. 2025 Aug 12;97(31):16868-16876. doi: 10.1021/acs.analchem.5c01980. Epub 2025 Jul 28.
3
The Parkinson's disease drug entacapone disrupts gut microbiome homoeostasis via iron sequestration.
Nat Microbiol. 2024 Dec;9(12):3165-3183. doi: 10.1038/s41564-024-01853-0. Epub 2024 Nov 21.
4
In vivo organoid growth monitoring by stimulated Raman histology.
Npj Imaging. 2024;2(1):18. doi: 10.1038/s44303-024-00019-1. Epub 2024 Jun 28.
5
Fast compressive Raman micro-spectroscopy to image and classify microplastics from natural marine environment.
Environ Technol Innov. 2024 May;34:103622. doi: 10.1016/j.eti.2024.103622.
6
The Parkinson's drug entacapone disrupts gut microbiome homeostasis via iron sequestration.
bioRxiv. 2023 Nov 13:2023.11.12.566429. doi: 10.1101/2023.11.12.566429.
7
Simultaneous Dual-Band Hyperspectral Stimulated Raman Scattering Microscopy with Femtosecond Optical Parametric Oscillators.
J Phys Chem B. 2023 Mar 16;127(10):2187-2197. doi: 10.1021/acs.jpcb.2c09105. Epub 2023 Mar 8.
8
Frequency modulation stimulated Raman scattering scheme for real-time background correction with a single light source.
Biomed Opt Express. 2022 Dec 19;14(1):315-325. doi: 10.1364/BOE.476513. eCollection 2023 Jan 1.

本文引用的文献

1
Simultaneous stimulated Raman gain and loss detection (SRGAL).
Opt Express. 2020 Sep 28;28(20):29619-29630. doi: 10.1364/OE.400298.
3
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.
Nat Med. 2020 Jan;26(1):52-58. doi: 10.1038/s41591-019-0715-9. Epub 2020 Jan 6.
4
Stimulated Raman histology: one to one comparison with standard hematoxylin and eosin staining.
Biomed Opt Express. 2019 Sep 30;10(10):5378-5384. doi: 10.1364/BOE.10.005378. eCollection 2019 Oct 1.
6
Optical imaging of metabolic dynamics in animals.
Nat Commun. 2018 Aug 6;9(1):2995. doi: 10.1038/s41467-018-05401-3.
8
Antibiotic Susceptibility Determination within One Cell Cycle at Single-Bacterium Level by Stimulated Raman Metabolic Imaging.
Anal Chem. 2018 Mar 20;90(6):3737-3743. doi: 10.1021/acs.analchem.7b03382. Epub 2018 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验