Suppr超能文献

用于培养癌细胞系中 DNA 损伤研究中微核定量的深度学习工作流程:原理验证研究。

A deep learning workflow for quantification of micronuclei in DNA damage studies in cultured cancer cell lines: A proof of principle investigation.

机构信息

Logy.AI, Machine Learning Research Division, Indian Institute of Technology Bhilai, Raipur India.

Genome engineering laboratory, University of Westminster, London W1W 6UW, United Kingdom.

出版信息

Comput Methods Programs Biomed. 2023 Apr;232:107447. doi: 10.1016/j.cmpb.2023.107447. Epub 2023 Feb 26.

Abstract

The cytokinesis block micronucleus assay is widely used for measuring/scoring/counting micronuclei, a marker of genome instability in cultured and primary cells. Though a gold standard method, this is a laborious and time-consuming process with person-to-person variation observed in quantification of micronuclei. We report in this study the utilisation of a new deep learning workflow for detection of micronuclei in DAPI stained nuclear images. The proposed deep learning framework achieved an average precision of >90% in detection of micronuclei. This proof of principle investigation in a DNA damage studies laboratory supports the idea of deploying AI powered tools in a cost-effective manner for repetitive and laborious tasks with relevant computational expertise. These systems will also help improving the quality of data and wellbeing of researchers.

摘要

有丝分裂阻断微核试验被广泛用于测量/评分/计数微核,这是培养细胞和原代细胞中基因组不稳定性的标志物。虽然这是一种金标准方法,但由于在微核定量方面存在个体间差异,因此该方法非常繁琐和耗时。在这项研究中,我们报告了一种新的深度学习工作流程在 DAPI 染色核图像中检测微核的应用。所提出的深度学习框架在检测微核方面的平均精度>90%。在 DNA 损伤研究实验室的这一原理验证研究支持了以具有相关计算专业知识的经济有效的方式部署人工智能工具来执行重复且繁琐任务的想法。这些系统还将有助于提高数据质量和研究人员的幸福感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验