Suppr超能文献

基于成像技术的铁路桥梁异常检测。

Anomaly detection in railway bridges using imaging techniques.

机构信息

Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy.

出版信息

Sci Rep. 2023 Mar 8;13(1):3916. doi: 10.1038/s41598-023-30683-z.

Abstract

The monitoring of the structural health of infrastructures is a very important topic in structural engineering, but unfortunately, there are few established techniques that are applicable in a wide range of situations. In this paper, we present a new method that adapts image analysis tools and methodologies, taken from the field of computer vision, and applies them to the monitoring signals of a railway bridge. We show that our method correctly identifies changes in the structural health of the bridge with very high precision, thus providing a better, simpler, and more general alternative to current methodologies used in the field.

摘要

基础设施的结构健康监测是结构工程中一个非常重要的课题,但不幸的是,目前可用的技术很少能够适用于广泛的情况。在本文中,我们提出了一种新的方法,该方法采用了图像处理分析工具和方法,这些工具和方法来自计算机视觉领域,并将其应用于铁路桥梁的监测信号中。我们表明,我们的方法能够非常精确地识别桥梁结构健康状况的变化,从而为该领域当前使用的方法提供了更好、更简单、更通用的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6fe/9995471/2e90dbd255fe/41598_2023_30683_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验