Suppr超能文献

一种感知运动学习的神经主动推理模型。

A neural active inference model of perceptual-motor learning.

作者信息

Yang Zhizhuo, Diaz Gabriel J, Fajen Brett R, Bailey Reynold, Ororbia Alexander G

机构信息

Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY, United States.

Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, United States.

出版信息

Front Comput Neurosci. 2023 Feb 20;17:1099593. doi: 10.3389/fncom.2023.1099593. eCollection 2023.

Abstract

The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience that can produce human-like behavior through reward-based learning. In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans through the systematic investigation of a visual-motor task that has been well-explored-that of intercepting a target moving over a ground plane. Previous research demonstrated that humans performing this task resorted to anticipatory changes in speed intended to compensate for semi-predictable changes in target speed later in the approach. To capture this behavior, our proposed "neural" AIF agent uses artificial neural networks to select actions on the basis of a very short term prediction of the information about the task environment that these actions would reveal along with a long-term estimate of the resulting cumulative expected free energy. Systematic variation revealed that anticipatory behavior emerged only when required by limitations on the agent's movement capabilities, and only when the agent was able to estimate accumulated free energy over sufficiently long durations into the future. In addition, we present a novel formulation of the that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy/reward. Together, these results demonstrate the use of AIF as a plausible model of anticipatory visually guided behavior in humans.

摘要

主动推理框架(AIF)是一个基于当代神经科学的有前景的新计算框架,它可以通过基于奖励的学习产生类似人类的行为。在本研究中,我们通过系统研究一个已得到充分探索的视觉运动任务——拦截在地面平面上移动的目标,来测试AIF捕捉预期在人类动作视觉引导中作用的能力。先前的研究表明,执行此任务的人类会采取速度的预期变化,旨在补偿接近过程中目标速度的半可预测变化。为了捕捉这种行为,我们提出的“神经”AIF智能体使用人工神经网络,基于对这些动作将揭示的任务环境信息的非常短期预测以及对由此产生的累积预期自由能的长期估计来选择动作。系统变化表明,只有当智能体的运动能力受到限制时,并且只有当智能体能够对未来足够长的持续时间内积累的自由能进行估计时,预期行为才会出现。此外,我们提出了一种新的公式,将多维世界状态映射到自由能/奖励的单维分布。总之,这些结果证明了AIF作为人类预期视觉引导行为的合理模型的用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cd1/9986490/54b1824d489f/fncom-17-1099593-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验